IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v237y2023i4p765-780.html
   My bibliography  Save this article

Inference of a competing risks model with partially observed failure causes under improved adaptive type-II progressive censoring

Author

Listed:
  • Subhankar Dutta
  • Suchandan Kayal

Abstract

In this paper, a competing risks model is analyzed based on improved adaptive type-II progressive censored sample (IAT-II PCS). Two independent competing causes of failures are considered. It is assumed that lifetimes of the competing causes of failure follow exponential distributions with different means. Maximum likelihood estimators (MLEs) for the unknown model parameters are obtained. Using asymptotic normality property of MLE, the asymptotic confidence intervals are constructed. Existence and uniqueness properties of the MLEs are studied. Further, bootstrap confidence intervals are computed. The Bayes estimators are obtained under symmetric and asymmetric loss functions with non-informative and informative priors. For informative priors, independent gamma distributions are considered. Highest posterior density (HPD) credible intervals are obtained. A Monte Carlo simulation study is carried out to compare performance of the established estimates. Furthermore, three different optimality criteria are proposed to obtain the optimal censoring plan. Finally, a real-life data set is considered for illustrative purposes.

Suggested Citation

  • Subhankar Dutta & Suchandan Kayal, 2023. "Inference of a competing risks model with partially observed failure causes under improved adaptive type-II progressive censoring," Journal of Risk and Reliability, , vol. 237(4), pages 765-780, August.
  • Handle: RePEc:sae:risrel:v:237:y:2023:i:4:p:765-780
    DOI: 10.1177/1748006X221104555
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221104555
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221104555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Essam A. Ahmed & Ziyad Ali Alhussain & Mukhtar M. Salah & Hanan Haj Ahmed & M. S. Eliwa, 2020. "Inference of progressively type-II censored competing risks data from Chen distribution with an application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(13-15), pages 2492-2524, November.
    2. Pareek, Bhuvanesh & Kundu, Debasis & Kumar, Sumit, 2009. "On progressively censored competing risks data for Weibull distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4083-4094, October.
    3. Kundu, Debasis & Joarder, Avijit, 2006. "Analysis of Type-II progressively hybrid censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2509-2528, June.
    4. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    5. A. Childs & B. Chandrasekar & N. Balakrishnan & D. Kundu, 2003. "Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 319-330, June.
    6. Lin, Chien-Tai & Chou, Cheng-Chieh & Huang, Yen-Lung, 2012. "Inference for the Weibull distribution with progressive hybrid censoring," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 451-467.
    7. Balakrishnan, N. & Kundu, Debasis, 2013. "Hybrid censoring: Models, inferential results and applications," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 166-209.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    2. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    3. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    4. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2015. "Estimation for mixed exponential distributions under type-II progressively hybrid censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 85-96.
    5. Ruhul Ali Khan & Murari Mitra, 2021. "Estimation issues in the Exponential–Logarithmic model under hybrid censoring," Statistical Papers, Springer, vol. 62(1), pages 419-450, February.
    6. Arnab Koley & Debasis Kundu, 2017. "On generalized progressive hybrid censoring in presence of competing risks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(4), pages 401-426, May.
    7. Ping Chan & Hon Ng & Feng Su, 2015. "Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(6), pages 747-770, August.
    8. Rui Hua & Wenhao Gui, 2022. "Inference for copula-based dependent competing risks model with step-stress accelerated life test under generalized progressive hybrid censoring," Computational Statistics, Springer, vol. 37(5), pages 2399-2436, November.
    9. O. E. Abo-Kasem & Ehab M. Almetwally & Wael S. Abu El Azm, 2023. "Inferential Survival Analysis for Inverted NH Distribution Under Adaptive Progressive Hybrid Censoring with Application of Transformer Insulation," Annals of Data Science, Springer, vol. 10(5), pages 1237-1284, October.
    10. Hassan Okasha & Yuhlong Lio & Mohammed Albassam, 2021. "On Reliability Estimation of Lomax Distribution under Adaptive Type-I Progressive Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(22), pages 1-38, November.
    11. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    12. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    13. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    14. Xiaojun Zhu & N. Balakrishnan & Helton Saulo, 2019. "On the existence and uniqueness of the maximum likelihood estimates of parameters of Laplace Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 759-778, October.
    15. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    16. M. M. Mohie El-Din & M. Nagy & M. H. Abu-Moussa, 2019. "Estimation and Prediction for Gompertz Distribution Under the Generalized Progressive Hybrid Censored Data," Annals of Data Science, Springer, vol. 6(4), pages 673-705, December.
    17. U. H. Salemi & S. Rezaei & Y. Si & S. Nadarajah, 2018. "On Optimal Progressive Censoring Schemes for Normal Distribution," Annals of Data Science, Springer, vol. 5(4), pages 637-658, December.
    18. Tzong-Ru Tsai & Yuhlong Lio & Wei-Chen Ting, 2021. "EM Algorithm for Mixture Distributions Model with Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
    19. Muqrin A. Almuqrin & Mukhtar M. Salah & Essam A. Ahmed, 2022. "Statistical Inference for Competing Risks Model with Adaptive Progressively Type-II Censored Gompertz Life Data Using Industrial and Medical Applications," Mathematics, MDPI, vol. 10(22), pages 1-38, November.
    20. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:237:y:2023:i:4:p:765-780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.