IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2007i2p869-878.html

Optimal multilinear estimation of a random vector under constraints of causality and limited memory

Author

Listed:
  • Howlett, P.G.
  • Torokhti, A.
  • Pearce, C.E.M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Howlett, P.G. & Torokhti, A. & Pearce, C.E.M., 2007. "Optimal multilinear estimation of a random vector under constraints of causality and limited memory," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 869-878, October.
  • Handle: RePEc:eee:csdana:v:52:y:2007:i:2:p:869-878
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00388-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Anatoli Torokhti & Phil Howlett & Charles Pearce, 2003. "Optimal Mathematical Models for Nonlinear Dynamical Systems," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 9(3), pages 327-343, September.
    2. Kubokawa, T. & Srivastava, M. S., 2003. "Estimating the covariance matrix: a new approach," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 28-47, July.
    3. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    4. Kauermann G. & Carroll R.J., 2001. "A Note on the Efficiency of Sandwich Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1387-1396, December.
    5. Lihong Wang, 2004. "Asymptotics of estimates in constrained nonlinear regression with long-range dependent innovations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(2), pages 251-264, June.
    6. Torokhti, Anatoli & Howlett, Phil, 2003. "Constructing fixed rank optimal estimators with method of best recurrent approximations," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 293-309, August.
    7. Champion, Colin J., 2003. "Empirical Bayesian estimation of normal variances and covariances," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 60-79, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao Zhao & Olivier Ledoit & Hui Jiang, 2019. "Risk reduction and efficiency increase in large portfolios: leverage and shrinkage," ECON - Working Papers 328, Department of Economics - University of Zurich, revised Jan 2020.
    2. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    3. Tae-Hwy Lee & Ekaterina Seregina, 2024. "Optimal Portfolio Using Factor Graphical Lasso," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 670-695.
    4. Weilong Liu & Yanchu Liu, 2025. "Covariance Matrix Estimation for Positively Correlated Assets," Papers 2507.01545, arXiv.org.
    5. Fernandez-Perez, Adrian & Fuertes, Ana-Maria & Miffre, Joëlle, 2019. "A comprehensive appraisal of style-integration methods," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 134-150.
    6. Weidner, Martin & Zylkin, Thomas, 2021. "Bias and consistency in three-way gravity models," Journal of International Economics, Elsevier, vol. 132(C).
    7. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    8. Avagyan, Vahe & Alonso Fernández, Andrés Modesto & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Mishra, Anil V., 2016. "Foreign bias in Australian-domiciled mutual fund holdings," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 101-123.
    10. Anatolyev, Stanislav & Gospodinov, Nikolay, 2011. "Specification Testing In Models With Many Instruments," Econometric Theory, Cambridge University Press, vol. 27(2), pages 427-441, April.
    11. Papp, Gábor & Caccioli, Fabio & Kondor, Imre, 2019. "Bias-variance trade-off in portfolio optimization under expected shortfall with ℓ 2 regularization," LSE Research Online Documents on Economics 100294, London School of Economics and Political Science, LSE Library.
    12. Marco Avellaneda & Brian Healy & Andrew Papanicolaou & George Papanicolaou, 2020. "PCA for Implied Volatility Surfaces," Papers 2002.00085, arXiv.org.
    13. McDowell, Shaun, 2018. "An empirical evaluation of estimation error reduction strategies applied to international diversification," Journal of Multinational Financial Management, Elsevier, vol. 44(C), pages 1-13.
    14. Ben R. Craig & Margherita Giuzio & Sandra Paterlini, 2019. "The Effect of Possible EU Diversification Requirements on the Risk of Banks’ Sovereign Bond Portfolios," Working Papers 19-12, Federal Reserve Bank of Cleveland.
    15. Olivier Ledoit & Michael Wolf, 2003. "Honey, I shrunk the sample covariance matrix," Economics Working Papers 691, Department of Economics and Business, Universitat Pompeu Fabra.
    16. Badi H. Baltagi & Qu Feng & Chihwa Kao, 2009. "Testing for Sphericity in a Fixed Effects Panel Data Model (Revised July 2009)," Center for Policy Research Working Papers 112, Center for Policy Research, Maxwell School, Syracuse University.
    17. M Hashem Pesaran & Takashi Yamagata, 2024. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 407-460.
    18. Hongxin Zhao & Yilun Jiang & Yizhou Yang, 2023. "Robust and Sparse Portfolio: Optimization Models and Algorithms," Mathematics, MDPI, vol. 11(24), pages 1-20, December.
    19. Huajun Huang & Yuexin Li & Shu-Chin Lin & Yuyan Yi & Jingyi Zheng, 2025. "Towards Analysis of Covariance Descriptors via Bures–Wasserstein Distance," Mathematics, MDPI, vol. 13(13), pages 1-26, July.
    20. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2007:i:2:p:869-878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.