IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v209y2025ics0167947325000519.html
   My bibliography  Save this article

Multiply robust estimation of causal effects using linked data

Author

Listed:
  • Luo, Shanshan
  • Zhang, Yechi
  • Li, Wei
  • Geng, Zhi

Abstract

Unmeasured confounding presents a common challenge in observational studies, potentially making standard causal parameters unidentifiable without additional assumptions. Given the increasing availability of diverse data sources, exploiting data linkage offers a potential solution to mitigate unmeasured confounding within a primary study of interest. However, this approach often introduces selection bias, as data linkage is feasible only for a subset of the study population. To address such a concern, this paper explores three nonparametric identification strategies assuming that a unit's inclusion in the linked cohort is determined solely by the observed confounders, while acknowledging that the ignorability assumption may depend on some partially unobserved covariates. The existence of multiple identification strategies motivates the development of estimators that effectively capture distinct components of the observed data distribution. Appropriately combining these estimators yields triply robust estimators for the average treatment effect. These estimators remain consistent if at least one of the three distinct parts of the observed data law is correct. Moreover, they are locally efficient if all the models are correctly specified. The proposed estimators are evaluated using simulation studies and real data analysis.

Suggested Citation

  • Luo, Shanshan & Zhang, Yechi & Li, Wei & Geng, Zhi, 2025. "Multiply robust estimation of causal effects using linked data," Computational Statistics & Data Analysis, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000519
    DOI: 10.1016/j.csda.2025.108175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000519
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.