IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Adjustment for Missing Confounders Using External Validation Data and Propensity Scores

Listed author(s):
  • Lawrence C. McCandless
  • Sylvia Richardson
  • Nicky Best
Registered author(s):

    Reducing bias from missing confounders is a challenging problem in the analysis of observational data. Information about missing variables is sometimes available from external validation data, such as surveys or secondary samples drawn from the same source population. In principle, the validation data permit us to recover information about the missing data, but the difficulty is in eliciting a valid model for the nuisance distribution of the missing confounders. Motivated by a British study of the effects of trihalomethane exposure on risk of full-term low birthweight, we describe a flexible Bayesian procedure for adjusting for a vector of missing confounders using external validation data. We summarize the missing confounders with a scalar summary score using the propensity score methodology of Rosenbaum and Rubin. The score has the property that it induces conditional independence between the exposure and the missing confounders, given the measured confounders. It balances the unmeasured confounders across exposure groups, within levels of measured covariates. To adjust for bias, we need only model and adjust for the summary score during Markov chain Monte Carlo computation. Simulation results illustrate that the proposed method reduces bias from several missing confounders over a range of different sample sizes for the validation data. Appendices A--C are available as online supplementary material.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 497 (March)
    Pages: 40-51

    in new window

    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:40-51
    DOI: 10.1080/01621459.2011.643739
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:40-51. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.