Using Bayesian graphical models to model biases in observational studies and to combine multiple sources of data: application to low birth weight and water disinfection by‐products
Author
Abstract
Suggested Citation
DOI: 10.1111/j.1467-985X.2008.00582.x
Download full text from publisher
References listed on IDEAS
- Jon Wakefield, 2003. "Sensitivity Analyses for Ecological Regression," Biometrics, The International Biometric Society, vol. 59(1), pages 9-17, March.
- Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
- Paul R. Rosenbaum, 2004. "Design sensitivity in observational studies," Biometrika, Biometrika Trust, vol. 91(1), pages 153-164, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lawrence C. McCandless & Sylvia Richardson & Nicky Best, 2012. "Adjustment for Missing Confounders Using External Validation Data and Propensity Scores," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 40-51, March.
- Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
- Siyu Heng & Hyunseung Kang & Dylan S. Small & Colin B. Fogarty, 2021. "Increasing power for observational studies of aberrant response: An adaptive approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 482-504, July.
- Douglas E. Schaubel & Guanghui Wei, 2011. "Double Inverse-Weighted Estimation of Cumulative Treatment Effects Under Nonproportional Hazards and Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 29-38, March.
- Carlos Díaz-Venegas, 2014. "Identifying the Confounders of Marginalization and Mortality in Mexico, 2003–2007," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 118(2), pages 851-875, September.
- A. Goubar & A. E. Ades & D. De Angelis & C. A. McGarrigle & C. H. Mercer & P. A. Tookey & K. Fenton & O. N. Gill, 2008. "Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 541-580, June.
- Xavier de Luna & Mathias Lundin, 2014. "Sensitivity analysis of the unconfoundedness assumption with an application to an evaluation of college choice effects on earnings," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1767-1784, August.
- A. E. Ades & A. J. Sutton, 2006. "Multiparameter evidence synthesis in epidemiology and medical decision‐making: current approaches," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 5-35, January.
- McCandless Lawrence C., 2012. "Meta-Analysis of Observational Studies with Unmeasured Confounders," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-31, January.
- Jiang, Zhichao & Ding, Peng, 2017. "The directions of selection bias," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 104-109.
- Maria Gheorghe & Susan Picavet & Monique Verschuren & Werner B. F. Brouwer & Pieter H. M. Baal, 2017. "Health losses at the end of life: a Bayesian mixed beta regression approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 723-749, June.
- Frida Skog, 2019. "Sibling Effects on Adult Earnings Among Poor and Wealthy Children Evidence from Sweden," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 12(3), pages 917-942, June.
- Michael Tiefelsdorf & Daniel A Griffith, 2007. "Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach," Environment and Planning A, , vol. 39(5), pages 1193-1221, May.
- Tom Engsted & Jesper W. Schneider, 2024.
"Non-Experimental Data, Hypothesis Testing, and the Likelihood Principle: A Social Science Perspective,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 13(1), pages 1-66, February.
- Engsted, Tom & Schneider, Jesper W., 2023. "Non-Experimental Data, Hypothesis Testing, and the Likelihood Principle: A Social Science Perspective," SocArXiv nztk8, Center for Open Science.
- Rebecca M Turner & Myfanwy Lloyd-Jones & Dilly O C Anumba & Gordon C S Smith & David J Spiegelhalter & Hazel Squires & John W Stevens & Michael J Sweeting & Stanislaw J Urbaniak & Robert Webster & Sim, 2012. "Routine Antenatal Anti-D Prophylaxis in Women Who Are Rh(D) Negative: Meta-Analyses Adjusted for Differences in Study Design and Quality," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-10, February.
- K. M. Rhodes & J. Savović & R. Elbers & H. E. Jones & J. P. T. Higgins & J. A. C. Sterne & N. J. Welton & R. M. Turner, 2020. "Adjusting trial results for biases in meta‐analysis: combining data‐based evidence on bias with detailed trial assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 193-209, January.
- H. Lu & P. Yin & R.X. Yue & J.Q. Shi, 2015. "Robust confidence intervals for trend estimation in meta-analysis with publication bias," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2715-2733, December.
- Paul Gustafson, 2006. "Sample size implications when biases are modelled rather than ignored," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 865-881, October.
- Andrew Gelman & Christian Hennig, 2017. "Beyond subjective and objective in statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 967-1033, October.
- Rebecca M. Turner & David J. Spiegelhalter & Gordon C. S. Smith & Simon G. Thompson, 2009. "Bias modelling in evidence synthesis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 21-47, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:172:y:2009:i:3:p:615-637. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.