IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v209y2025ics0167947325000507.html
   My bibliography  Save this article

Discretization: Privacy-preserving data publishing for causal discovery

Author

Listed:
  • Ahn, Youngmin
  • Park, Woongjoon
  • Park, Gunwoong

Abstract

As the importance of data privacy continues to grow, data masking has emerged as a crucial method. Notably, data masking techniques aim to protect individual privacy, while enabling data analysts to derive meaningful statistical results, such as the identification of directional or causal relationships between variables. Hence, this study demonstrates the advantages of a quantile-based discretization for protecting privacy and uncovering the relationships between variables in Gaussian directed acyclic graphical (DAG) models. Specifically, it introduces quantile-discretized Gaussian DAG models where each node variable is discretized based on the quantiles. Additionally, it proposes the bi-partition process, which aids in recovering the covariance matrix; hence, the models can be identifiable. Furthermore, a consistent algorithm is developed for learning the underlying structure using the quantile-based discretized data. Finally, through numerical experiments and the application of DAG learning algorithms to discretized MLB data, the proposed algorithm is demonstrated to significantly outperform the state-of-the-art DAG model learning algorithms.

Suggested Citation

  • Ahn, Youngmin & Park, Woongjoon & Park, Gunwoong, 2025. "Discretization: Privacy-preserving data publishing for causal discovery," Computational Statistics & Data Analysis, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000507
    DOI: 10.1016/j.csda.2025.108174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000507
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. J. Peters & P. Bühlmann, 2014. "Identifiability of Gaussian structural equation models with equal error variances," Biometrika, Biometrika Trust, vol. 101(1), pages 219-228.
    2. Peter Spirtes & Clark Glymour & Richard Scheines, 2001. "Causation, Prediction, and Search, 2nd Edition," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262194406, December.
    3. Jinshuo Dong & Aaron Roth & Weijie J. Su, 2022. "Gaussian differential privacy," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 3-37, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C Schultheiss & P Bühlmann, 2023. "Ancestor regression in linear structural equation models," Biometrika, Biometrika Trust, vol. 110(4), pages 1117-1124.
    2. Bettendorf, Timo & Heinlein, Reinhold, 2019. "Connectedness between G10 currencies: Searching for the causal structure," Discussion Papers 06/2019, Deutsche Bundesbank.
    3. Fangting Zhou & Kejun He & Yang Ni, 2023. "Individualized causal discovery with latent trajectory embedded Bayesian networks," Biometrics, The International Biometric Society, vol. 79(4), pages 3191-3202, December.
    4. Maarten J. Bijlsma & Rhian M. Daniel & Fanny Janssen & Bianca L. De Stavola, 2017. "An Assessment and Extension of the Mechanism-Based Approach to the Identification of Age-Period-Cohort Models," Demography, Springer;Population Association of America (PAA), vol. 54(2), pages 721-743, April.
    5. Liu, Tianyu & Mukherjee, Somabha & Biswas, Rahul, 2024. "Tensor recovery in high-dimensional Ising models," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    6. Federico Castelletti & Guido Consonni, 2021. "Bayesian inference of causal effects from observational data in Gaussian graphical models," Biometrics, The International Biometric Society, vol. 77(1), pages 136-149, March.
    7. Fangting Zhou & Kejun He & Kunbo Wang & Yanxun Xu & Yang Ni, 2023. "Functional Bayesian networks for discovering causality from multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3279-3293, December.
    8. Stimel Derek, 2009. "A Statistical Analysis of NFL Quarterback Rating Variables," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-26, May.
    9. Castelletti, Federico & Peluso, Stefano, 2021. "Equivalence class selection of categorical graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    10. Klimova, Anna & Uhler, Caroline & Rudas, Tamás, 2015. "Faithfulness and learning hypergraphs from discrete distributions," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 57-72.
    11. Tyler J. VanderWeele, 2011. "Sensitivity Analysis for Contagion Effects in Social Networks," Sociological Methods & Research, , vol. 40(2), pages 240-255, May.
    12. Leonelli, Manuele & Varando, Gherardo, 2024. "Robust learning of staged tree models: A case study in evaluating transport services," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    13. Nikolaos Petrakis & Stefano Peluso & Dimitris Fouskakis & Guido Consonni, 2020. "Objective methods for graphical structural learning," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 420-438, August.
    14. Choi, Semin & Kim, Yesool & Park, Gunwoong, 2023. "Densely connected sub-Gaussian linear structural equation model learning via ℓ1- and ℓ2-regularized regressions," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    15. Heckman, James & Pinto, Rodrigo, 2024. "Econometric causality: The central role of thought experiments," Journal of Econometrics, Elsevier, vol. 243(1).
    16. Huang, Wei & Lai, Pei-Chun & Bessler, David A., 2018. "On the changing structure among Chinese equity markets: Hong Kong, Shanghai, and Shenzhen," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1020-1032.
    17. Ying Zhou, 2025. "Causal Inference with Secondary Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 17(1), pages 3-16, April.
    18. Mario Grassi & Barbara Tarantino, 2025. "SEMdag: Fast learning of Directed Acyclic Graphs via node or layer ordering," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-24, January.
    19. Maarten J. Bijlsma & Rhian Daniel & Fanny Janssen & Bianca De Stavola, 2016. "An assessment and extension of the mechanism-based approach to the identification of age-period-cohort models," MPIDR Working Papers WP-2016-005, Max Planck Institute for Demographic Research, Rostock, Germany.
    20. Steven Sheffrin & Rujun Zhao, 2021. "Public perceptions of the tax avoidance of corporations and the wealthy," Empirical Economics, Springer, vol. 61(1), pages 259-277, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.