IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v208y2025ics0167947325000234.html
   My bibliography  Save this article

Testing the constancy of the variance for time series with a trend

Author

Listed:
  • Jin, Lei
  • Cai, Li
  • Wang, Suojin

Abstract

The assumption of constant variance is fundamental in numerous statistical procedures for time series analysis. Nonlinear time series may exhibit time-varying local conditional variance, even when they are globally homoscedastic. Two novel tests are proposed to assess the constancy of variance in time series with a possible time-varying mean trend. Unlike previous approaches, the new tests rely on Walsh transformations of squared processes after recentering the time series data. It is shown that the corresponding Walsh coefficients have desirable properties, such as asymptotic independence. Both a max-type statistic and an order selection statistic are developed, along with their asymptotic null distributions. Furthermore, the consistency of the proposed statistics under a sequence of local alternatives is established. An extensive simulation study is conducted to examine the finite-sample performance of the procedures in comparison with existing methodologies. The empirical results show that the proposed methods are more powerful in many situations while maintaining reasonable Type I error rates, especially for nonlinear time series. The proposed methods are applied to test the global homoscedasticity of a financial time series, a well log time series with a non-constant mean structure, and a vibration time series.

Suggested Citation

  • Jin, Lei & Cai, Li & Wang, Suojin, 2025. "Testing the constancy of the variance for time series with a trend," Computational Statistics & Data Analysis, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:csdana:v:208:y:2025:i:c:s0167947325000234
    DOI: 10.1016/j.csda.2025.108147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000234
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhou Zhou, 2013. "Heteroscedasticity and Autocorrelation Robust Structural Change Detection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 726-740, June.
    2. Jin, Lei, 2021. "Robust tests for time series comparison based on Laplace periodograms," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    3. Sangyeol Lee & Siyun Park, 2001. "The Cusum of Squares Test for Scale Changes in Infinite Order Moving Average Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(4), pages 625-644, December.
    4. Lei Jin & Suojin Wang & Haiyan Wang, 2015. "A new non-parametric stationarity test of time series in the time domain," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(5), pages 893-922, November.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Dean W. Wichern & Robert B. Miller & Der‐Ann Hsu, 1976. "Changes of Variance in First‐Order Autoregressive Time Series Models—With an Application," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(3), pages 248-256, November.
    7. Dominik Wied & Matthias Arnold & Nicolai Bissantz & Daniel Ziggel, 2012. "A new fluctuation test for constant variances with applications to finance," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1111-1127, November.
    8. Carina Gerstenberger & Daniel Vogel & Martin Wendler, 2020. "Tests for Scale Changes Based on Pairwise Differences," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1336-1348, July.
    9. Andrew Patton & Dimitris Politis & Halbert White, 2009. "Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 372-375.
    10. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    11. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
    2. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    3. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    4. Gonçalves, Sílvia & White, Halbert, 2002. "The Bootstrap Of The Mean For Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1367-1384, December.
    5. Baek, Changryong & Gates, Katheleen M. & Leinwand, Benjamin & Pipiras, Vladas, 2021. "Two sample tests for high-dimensional autocovariances," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    6. Pape, Katharina & Wied, Dominik & Galeano, Pedro, 2016. "Monitoring multivariate variance changes," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 54-68.
    7. Yang Wang & Baoying Yang, 2025. "A Self-Normalized Online Monitoring Method Based on the Characteristic Function," Mathematics, MDPI, vol. 13(5), pages 1-16, February.
    8. Davide De Gaetano, 2017. "A Bootstrap Bias Correction Of Long Run Fourth Order Moment Estimation In The Cusum Of Squares Test," Departmental Working Papers of Economics - University 'Roma Tre' 0220, Department of Economics - University Roma Tre.
    9. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
    10. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    11. Nieto, María Rosa & Ruiz Ortega, Esther, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Charles, Amélie & Darné, Olivier, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
    13. Górecki, Tomasz & Horváth, Lajos & Kokoszka, Piotr, 2018. "Change point detection in heteroscedastic time series," Econometrics and Statistics, Elsevier, vol. 7(C), pages 63-88.
    14. Lyócsa, Štefan & Plíhal, Tomáš, 2022. "Russia’s ruble during the onset of the Russian invasion of Ukraine in early 2022: The role of implied volatility and attention," Finance Research Letters, Elsevier, vol. 48(C).
    15. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    16. Li, Xingyi & Zakamulin, Valeriy, 2020. "The term structure of volatility predictability," International Journal of Forecasting, Elsevier, vol. 36(2), pages 723-737.
    17. Fang Duan & Dominik Wied, 2018. "A residual-based multivariate constant correlation test," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 653-687, August.
    18. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    19. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    20. Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:208:y:2025:i:c:s0167947325000234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.