Simulating longer vectors of correlated binary random variables via multinomial sampling
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2017.04.002
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- N. Rao Chaganty & Harry Joe, 2006. "Range of correlation matrices for dependent Bernoulli random variables," Biometrika, Biometrika Trust, vol. 93(1), pages 197-206, March.
- Bahjat F. Qaqish, 2003. "A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations," Biometrika, Biometrika Trust, vol. 90(2), pages 455-463, June.
- Matthew W. Guerra & Justine Shults, 2014. "A Note on the Simulation of Overdispersed Random Variables With Specified Marginal Means and Product Correlations," The American Statistician, Taylor & Francis Journals, vol. 68(2), pages 104-107, May.
- Patrick J. Farrell & Katrina Rogers‐Stewart, 2008. "Methods for Generating Longitudinally Correlated Binary Data," International Statistical Review, International Statistical Institute, vol. 76(1), pages 28-38, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jorge A. Sefair & Oscar Guaje & Andrés L. Medaglia, 2021. "A column-oriented optimization approach for the generation of correlated random vectors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 777-808, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Modarres, Reza, 2011. "High-dimensional generation of Bernoulli random vectors," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1136-1142, August.
- Sergei Leonov & Bahjat Qaqish, 2020. "Correlated endpoints: simulation, modeling, and extreme correlations," Statistical Papers, Springer, vol. 61(2), pages 741-766, April.
- Fontana, Roberto & Semeraro, Patrizia, 2018. "Representation of multivariate Bernoulli distributions with a given set of specified moments," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 290-303.
- Berman, Oded & Krass, Dmitry & Menezes, Mozart B.C., 2013. "Location and reliability problems on a line: Impact of objectives and correlated failures on optimal location patterns," Omega, Elsevier, vol. 41(4), pages 766-779.
- Krause, Daniel & Scherer, Matthias & Schwinn, Jonas & Werner, Ralf, 2018. "Membership testing for Bernoulli and tail-dependence matrices," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 240-260.
- Oman, Samuel D., 2009. "Easily simulated multivariate binary distributions with given positive and negative correlations," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 999-1005, February.
- Matthew W. Guerra & Justine Shults, 2014. "A Note on the Simulation of Overdispersed Random Variables With Specified Marginal Means and Product Correlations," The American Statistician, Taylor & Francis Journals, vol. 68(2), pages 104-107, May.
- Guosheng Yin & Yu Shen, 2005. "Adaptive Design and Estimation in Randomized Clinical Trials with Correlated Observations," Biometrics, The International Biometric Society, vol. 61(2), pages 362-369, June.
- Hammill, Bradley G. & Preisser, John S., 2006. "A SAS/IML software program for GEE and regression diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1197-1212, November.
- Molin Wang & John M. Williamson, 2005. "Generalization of the Mantel–Haenszel Estimating Function for Sparse Clustered Binary Data," Biometrics, The International Biometric Society, vol. 61(4), pages 973-981, December.
- Deng, Yihao & Sabo, Roy T. & Chaganty, N. Rao, 2012. "Multivariate probit analysis of binary familial data using stochastic representations," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 656-663.
- Nooraee, Nazanin & Molenberghs, Geert & van den Heuvel, Edwin R., 2014. "GEE for longitudinal ordinal data: Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 70-83.
- Jorge A. Sefair & Oscar Guaje & Andrés L. Medaglia, 2021. "A column-oriented optimization approach for the generation of correlated random vectors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 777-808, September.
- Y. Fong & J. Wakefield & S. De Rosa & N. Frahm, 2012. "A Robust Bayesian Random Effects Model for Nonlinear Calibration Problems," Biometrics, The International Biometric Society, vol. 68(4), pages 1103-1112, December.
- Tsung-Shan Tsou & Wan-Chen Chen, 2013. "Estimation of intra-cluster correlation coefficient via the failure of Bartlett’s second identity," Computational Statistics, Springer, vol. 28(4), pages 1681-1698, August.
- Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
- Paul Rogers & Julie Stoner, 2021. "Assessment of a Modified Sandwich Estimator for Generalized Estimating Equations with Application to Opioid Poisoning in MIMIC-IV ICU Patients," Stats, MDPI, vol. 4(3), pages 1-15, August.
- Jafary, Bentolhoda & Mele, Andrew & Fiondella, Lance, 2020. "Component-based system reliability subject to positive and negative correlation," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Alessandro Barbiero, 2021. "Inducing a desired value of correlation between two point-scale variables: a two-step procedure using copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 307-334, June.
- B. C. Sutradhar, 2008. "On auto-regression type dynamic mixed models for binary panel data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 209-221.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:114:y:2017:i:c:p:1-11. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/csdana/v114y2017icp1-11.html