IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2006i2p1197-1212.html
   My bibliography  Save this article

A SAS/IML software program for GEE and regression diagnostics

Author

Listed:
  • Hammill, Bradley G.
  • Preisser, John S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Hammill, Bradley G. & Preisser, John S., 2006. "A SAS/IML software program for GEE and regression diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1197-1212, November.
  • Handle: RePEc:eee:csdana:v:51:y:2006:i:2:p:1197-1212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(05)00309-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Rao Chaganty & Harry Joe, 2004. "Efficiency of generalized estimating equations for binary responses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 851-860, November.
    2. Bahjat F. Qaqish, 2003. "A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations," Biometrika, Biometrika Trust, vol. 90(2), pages 455-463, June.
    3. Lloyd A. Mancl & Timothy A. DeRouen, 2001. "A Covariance Estimator for GEE with Improved Small‐Sample Properties," Biometrics, The International Biometric Society, vol. 57(1), pages 126-134, March.
    4. Kauermann G. & Carroll R.J., 2001. "A Note on the Efficiency of Sandwich Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1387-1396, December.
    5. Preisser, John S. & Garcia, Daniel I., 2005. "Alternative computational formulae for generalized linear model diagnostics: identifying influential observations with SAS software," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 755-764, April.
    6. John S. Preisser & Bahjat F. Qaqish, 1999. "Robust Regression for Clustered Data with Application to Binary Responses," Biometrics, The International Biometric Society, vol. 55(2), pages 574-579, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yelland Lisa N & Salter Amy B & Ryan Philip, 2011. "Relative Risk Estimation in Cluster Randomized Trials: A Comparison of Generalized Estimating Equation Methods," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-26, May.
    2. Vens, Maren & Ziegler, Andreas, 2012. "Generalized estimating equations and regression diagnostics for longitudinal controlled clinical trials: A case study," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1232-1242.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vens, Maren & Ziegler, Andreas, 2012. "Generalized estimating equations and regression diagnostics for longitudinal controlled clinical trials: A case study," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1232-1242.
    2. Westgate, Philip M., 2013. "A bias-corrected covariance estimator for improved inference when using an unstructured correlation with quadratic inference functions," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1553-1558.
    3. Paniagua, Victoria, 2022. "When clients vote for brokers: How elections improve public goods provision in urban slums," World Development, Elsevier, vol. 158(C).
    4. Fan, Chunpeng & Zhang, Donghui, 2014. "Wald-type rank tests: A GEE approach," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 1-16.
    5. Masahiko Gosho & Hisashi Noma & Kazushi Maruo, 2021. "Practical Review and Comparison of Modified Covariance Estimators for Linear Mixed Models in Small‐sample Longitudinal Studies with Missing Data," International Statistical Review, International Statistical Institute, vol. 89(3), pages 550-572, December.
    6. Michael P. Fay & Barry I. Graubard, 2001. "Small-Sample Adjustments for Wald-Type Tests Using Sandwich Estimators," Biometrics, The International Biometric Society, vol. 57(4), pages 1198-1206, December.
    7. Cheng, Guang & Yu, Zhuqing & Huang, Jianhua Z., 2013. "The cluster bootstrap consistency in generalized estimating equations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 33-47.
    8. Bing Lu & John S. Preisser & Bahjat F. Qaqish & Chirayath Suchindran & Shrikant I. Bangdiwala & Mark Wolfson, 2007. "A Comparison of Two Bias-Corrected Covariance Estimators for Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 63(3), pages 935-941, September.
    9. Fontana, Roberto & Semeraro, Patrizia, 2018. "Representation of multivariate Bernoulli distributions with a given set of specified moments," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 290-303.
    10. Di Shu & Jessica G. Young & Sengwee Toh & Rui Wang, 2021. "Variance estimation in inverse probability weighted Cox models," Biometrics, The International Biometric Society, vol. 77(3), pages 1101-1117, September.
    11. Osorio, Felipe & Gárate, Ángelo & Russo, Cibele M., 2024. "The gradient test statistic for outlier detection in generalized estimating equations," Statistics & Probability Letters, Elsevier, vol. 209(C).
    12. Oman, Samuel D., 2009. "Easily simulated multivariate binary distributions with given positive and negative correlations," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 999-1005, February.
    13. Hines, R.J. O'Hara & Hines, W.G.S., 2010. "Indices for covariance mis-specification in longitudinal data analysis with no missing responses and with MAR drop-outs," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 806-815, April.
    14. Sara Sauer & Bethany Hedt‐Gauthier & Claudia Rivera‐Rodriguez & Sebastien Haneuse, 2022. "Small‐sample inference for cluster‐based outcome‐dependent sampling schemes in resource‐limited settings: Investigating low birthweight in Rwanda," Biometrics, The International Biometric Society, vol. 78(2), pages 701-715, June.
    15. Jamie Perin & John S. Preisser, 2017. "Alternating logistic regressions with improved finite sample properties," Biometrics, The International Biometric Society, vol. 73(2), pages 696-705, June.
    16. Dateng Li & Jing Cao & Song Zhang, 2020. "Power analysis for cluster randomized trials with multiple binary co‐primary endpoints," Biometrics, The International Biometric Society, vol. 76(4), pages 1064-1074, December.
    17. Højsgaard, Søren & Halekoh, Ulrich & Yan, Jun, 2005. "The R Package geepack for Generalized Estimating Equations," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i02).
    18. Guosheng Yin & Yu Shen, 2005. "Adaptive Design and Estimation in Randomized Clinical Trials with Correlated Observations," Biometrics, The International Biometric Society, vol. 61(2), pages 362-369, June.
    19. Preisser, John S. & Garcia, Daniel I., 2005. "Alternative computational formulae for generalized linear model diagnostics: identifying influential observations with SAS software," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 755-764, April.
    20. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2006:i:2:p:1197-1212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.