IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v97y2017icp84-89.html
   My bibliography  Save this article

Study of the variable growth hypernetworks influence on the scaling law

Author

Listed:
  • Shen, Ai-Zhong
  • Guo, Jin-Li
  • Suo, Qi

Abstract

This paper presents the influence of two kinds of variable growth hypernetworks on the scaling law of hypernetworks. Our model can be degenerated to the original evolving model. On one hand, we establish the variable growth of hyperedges evolving hypernetworks model and obtain the stationary average hyperdegree distribution of the model by employing the Poisson process theory and the continuous method. The theoretical analyses in this paper agree with the conducted numerical simulations. The results show that the transient average hyperdegree distribution of the hypernetwork follows the scale-free law. However, the stationary average hyperdegree distribution does not, which indicates that the number of hyperedges at each time step affects the scaling law of hypernetworks. On the other hand, we establish the new nodes variable growth hypernetworks model and obtain analytical solutions of the transient average hyperdegree distribution. We simulate to compare the different node growth rate effect on the hyperdegree distribution characteristics. The results show that the growth rate does not affect the scaling law properties of the hypernetworks. Only when λ=1 can we obtain analytical solutions of stationary average hyperdegree distribution of the hypernetwork which is not scale-free law.

Suggested Citation

  • Shen, Ai-Zhong & Guo, Jin-Li & Suo, Qi, 2017. "Study of the variable growth hypernetworks influence on the scaling law," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 84-89.
  • Handle: RePEc:eee:chsofr:v:97:y:2017:i:c:p:84-89
    DOI: 10.1016/j.chaos.2017.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917300504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Qingchu & Fu, Xinchu, 2016. "Immunization and epidemic threshold of an SIS model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 576-581.
    2. Bian, Yue-tang & Xu, Lu & Li, Jin-sheng, 2016. "Evolving dynamics of trading behavior based on coordination game in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 281-290.
    3. Nagurney, Anna & Dong, June & Zhang, Ding, 2002. "A supply chain network equilibrium model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(5), pages 281-303, September.
    4. Jian-Wei Wang & Li-Li Rong & Qiu-Hong Deng & Ji-Yong Zhang, 2010. "Evolving hypernetwork model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 77(4), pages 493-498, October.
    5. Carla Taramasco & Jean-Philippe Cointet & Camille Roth, 2010. "Academic team formation as evolving hypergraphs," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 721-740, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Ai-Zhong & Guo, Jin-Li & Wu, Guo-Lin & Jia, Shu-Wei, 2018. "The agglomeration phenomenon influence on the scaling law of the scientific collaboration system," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 461-467.
    2. Wang, Zhiping & Yin, Haofei & Jiang, Xin, 2020. "Exploring the dynamic growth mechanism of social networks using evolutionary hypergraph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Ai-Zhong & Guo, Jin-Li & Wu, Guo-Lin & Jia, Shu-Wei, 2018. "The agglomeration phenomenon influence on the scaling law of the scientific collaboration system," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 461-467.
    2. Nagurney, Anna & Saberi, Sara & Shukla, Shivani & Floden, Jonas, 2015. "Supply chain network competition in price and quality with multiple manufacturers and freight service providers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 248-267.
    3. Yang, Yuxiang & Goodarzi, Shadi & Jabbarzadeh, Armin & Fahimnia, Behnam, 2022. "In-house production and outsourcing under different emissions reduction regulations: An equilibrium decision model for global supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    4. Huey‐Kuo Chen & Huey‐Wen Chou, 2008. "Supply chain network equilibrium problem with capacity constraints," Papers in Regional Science, Wiley Blackwell, vol. 87(4), pages 605-621, November.
    5. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    6. Wang, Chengjin & Gao, Yudong & Li, Honggang, 2021. "Information interaction, behavioral synchronization and asset market volatility," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    7. Yan Zhou & Xue-Qi Liu & Kar-Hung Wong, 2021. "Remanufacturing Policies Options for a Closed-Loop Supply Chain Network," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    8. Malloy Brandon, 2018. "The Supply Network and Price Dispersion in the Canadian Gasoline Market," Review of Network Economics, De Gruyter, vol. 17(2), pages 75-107, June.
    9. Hajer Kefi & Sitesh Indra & Talel Abdessalem, 2016. "Social media marketing analytics : a multicultural approach applied to the beauty & cosmetic sector," Post-Print hal-01456580, HAL.
    10. Guitao Zhang & Xiao Zhang & Hao Sun & Xinyu Zhao, 2021. "Three-Echelon Closed-Loop Supply Chain Network Equilibrium under Cap-and-Trade Regulation," Sustainability, MDPI, vol. 13(11), pages 1-26, June.
    11. Hsu, Chaug-Ing & Li, Hui-Chieh, 2009. "An integrated plant capacity and production planning model for high-tech manufacturing firms with economies of scale," International Journal of Production Economics, Elsevier, vol. 118(2), pages 486-500, April.
    12. Wang, Jiang-Pan & Guo, Qiang & Yang, Guang-Yong & Liu, Jian-Guo, 2015. "Improved knowledge diffusion model based on the collaboration hypernetwork," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 250-256.
    13. Chan, Chi Kin & Zhou, Yan & Wong, Kar Hung, 2019. "An equilibrium model of the supply chain network under multi-attribute behaviors analysis," European Journal of Operational Research, Elsevier, vol. 275(2), pages 514-535.
    14. Hammond, David & Beullens, Patrick, 2007. "Closed-loop supply chain network equilibrium under legislation," European Journal of Operational Research, Elsevier, vol. 183(2), pages 895-908, December.
    15. Peiyue Cheng & Guitao Zhang & Hao Sun, 2022. "The Sustainable Supply Chain Network Competition Based on Non-Cooperative Equilibrium under Carbon Emission Permits," Mathematics, MDPI, vol. 10(9), pages 1-31, April.
    16. Huang, Yongxi & Chen, Yihsu, 2014. "Analysis of an imperfectly competitive cellulosic biofuel supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 1-14.
    17. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Pierre Cariou & Patrice Guillotreau, 2022. "Capacity management by global shipping alliances: findings from a game experiment," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(1), pages 41-66, March.
    19. Hamdouch, Younes & Ghoudi, Kilani, 2020. "A Supply Chain Equilibrium Model with General Price-Dependent Demand," Operations Research Perspectives, Elsevier, vol. 7(C).
    20. Dragicevic, Arnaud Z. & Barkaoui, Ahmed, 2017. "Forest-based industrial network: Case of the French timber market," Forest Policy and Economics, Elsevier, vol. 75(C), pages 23-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:97:y:2017:i:c:p:84-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.