IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v53y2019i4p1196-1212.html
   My bibliography  Save this article

Robust Supply Chain Network Equilibrium Model

Author

Listed:
  • Tatsuya Hirano

    (FUJITSU FIP Corporation, Tokyo, 105-8668 Japan)

  • Yasushi Narushima

    (Faculty of International Social Sciences, Yokohama National University, Hodogaya-ku, Yokohama, 240-8501 Japan)

Abstract

An important and often researched area of management science is mathematical modeling of a supply chain. Competitive situations can occur in supply chains owing to the involvement of multiple decision makers (players) that independently decide their behaviors. To investigate competitive supply chain networks, a supply chain network equilibrium (SCNE) model was proposed. Recently, particular attention has been paid to risk management of a supply chain. In equilibrium models, it is vital to consider players’ decisions and interdependence relations. Thus, we consider competitive supply chain networks with uncertainties in the other players’ strategies. In the proposed model, each player cannot know exactly the other players’ strategies, and they decide their strategy using the minimax principle (that is, assuming the worst case). We call it the robust SCNE model. We formulate the robust SCNE model as a variational inequality problem (VIP) in which the set associated with the VIP is constructed by second-order cone constraints. We show the existence and uniqueness of the equilibrium under mild assumptions. In addition, we give, in a special case, some relations between players’ strategies in the equilibrium and magnitudes of uncertainties. Finally, some numerical results are provided.

Suggested Citation

  • Tatsuya Hirano & Yasushi Narushima, 2019. "Robust Supply Chain Network Equilibrium Model," Transportation Science, INFORMS, vol. 53(4), pages 1196-1212, July.
  • Handle: RePEc:inm:ortrsc:v:53:y:2019:i:4:p:1196-1212
    DOI: 10.1287/trsc.2018.0843
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2018.0843
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2018.0843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hammond, David & Beullens, Patrick, 2007. "Closed-loop supply chain network equilibrium under legislation," European Journal of Operational Research, Elsevier, vol. 183(2), pages 895-908, December.
    2. Yasushi Narushima & Hideho Ogasawara & Shunsuke Hayashi, 2013. "A Smoothing Method with Appropriate Parameter Control Based on Fischer-Burmeister Function for Second-Order Cone Complementarity Problems," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-16, July.
    3. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    4. Juhe Sun & Jein-Shan Chen & Chun-Hsu Ko, 2012. "Neural networks for solving second-order cone constrained variational inequality problem," Computational Optimization and Applications, Springer, vol. 51(2), pages 623-648, March.
    5. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    6. Yang, Guang-fen & Wang, Zhi-ping & Li, Xiao-qiang, 2009. "The optimization of the closed-loop supply chain network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 16-28, January.
    7. Nagurney, Anna & Dong, June & Zhang, Ding, 2002. "A supply chain network equilibrium model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(5), pages 281-303, September.
    8. Yasushi Narushima & Nobuko Sagara & Hideho Ogasawara, 2011. "A Smoothing Newton Method with Fischer-Burmeister Function for Second-Order Cone Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 149(1), pages 79-101, April.
    9. Nagurney, Anna & Flores, Emilio Alvarez & Soylu, Ceren, 2016. "A Generalized Nash Equilibrium network model for post-disaster humanitarian relief," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 1-18.
    10. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    11. Dong, June & Zhang, Ding & Nagurney, Anna, 2004. "A supply chain network equilibrium model with random demands," European Journal of Operational Research, Elsevier, vol. 156(1), pages 194-212, July.
    12. Baghalian, Atefeh & Rezapour, Shabnam & Farahani, Reza Zanjirani, 2013. "Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case," European Journal of Operational Research, Elsevier, vol. 227(1), pages 199-215.
    13. Li, Dong & Nagurney, Anna, 2015. "A general multitiered supply chain network model of quality competition with suppliers," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 336-356.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiepeng & Zhou, Hong & Jin, Xiaodan, 2021. "Risk transmission in complex supply chain network with multi-drivers," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Yang, Yuxiang & Goodarzi, Shadi & Jabbarzadeh, Armin & Fahimnia, Behnam, 2022. "In-house production and outsourcing under different emissions reduction regulations: An equilibrium decision model for global supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yan & Chan, Chi Kin & Wong, Kar Hung, 2018. "A multi-period supply chain network equilibrium model considering retailers’ uncertain demands and dynamic loss-averse behaviors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 51-76.
    2. Chan, Chi Kin & Zhou, Yan & Wong, Kar Hung, 2019. "An equilibrium model of the supply chain network under multi-attribute behaviors analysis," European Journal of Operational Research, Elsevier, vol. 275(2), pages 514-535.
    3. Yang, Yuxiang & Goodarzi, Shadi & Jabbarzadeh, Armin & Fahimnia, Behnam, 2022. "In-house production and outsourcing under different emissions reduction regulations: An equilibrium decision model for global supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    4. Qiang, Qiang & Ke, Ke & Anderson, Trisha & Dong, June, 2013. "The closed-loop supply chain network with competition, distribution channel investment, and uncertainties," Omega, Elsevier, vol. 41(2), pages 186-194.
    5. Younes Hamdouch & Qiang Patrick Qiang & Kilani Ghoudi, 2017. "A Closed-Loop Supply Chain Equilibrium Model with Random and Price-Sensitive Demand and Return," Networks and Spatial Economics, Springer, vol. 17(2), pages 459-503, June.
    6. Vahid Nazari-Ghanbarloo & Ali Ghodratnama, 2021. "Optimizing a robust tri-objective multi-period reliable supply chain network considering queuing system and operational and disruption risks," Operational Research, Springer, vol. 21(3), pages 1963-2020, September.
    7. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    8. Yan Zhou & Miao Hou & Kar-Hung Wong, 2023. "The Optimal Remanufacturing Strategy of the Closed-Loop Supply Chain Network under Government Regulation and the Manufacturer’s Design for the Environment," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    9. Haixiang Wu & Bing Xu & Ding Zhang, 2019. "Closed-Loop Supply Chain Network Equilibrium Model with Subsidy on Green Supply Chain Technology Investment," Sustainability, MDPI, vol. 11(16), pages 1-26, August.
    10. E. Allevi & A. Gnudi & I. V. Konnov & G. Oggioni, 2018. "Evaluating the effects of environmental regulations on a closed-loop supply chain network: a variational inequality approach," Annals of Operations Research, Springer, vol. 261(1), pages 1-43, February.
    11. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    12. Yan Zhou & Xue-Qi Liu & Kar-Hung Wong, 2021. "Remanufacturing Policies Options for a Closed-Loop Supply Chain Network," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    13. Tao, Zhang Gui & Guang, Zhong Yong & Hao, Sun & Song, Hu Jin & Xin, Dai Geng, 2015. "Multi-period closed-loop supply chain network equilibrium with carbon emission constraints," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 354-365.
    14. Rezapour, Shabnam & Hassani, Ashkan & Farahani, Reza Zanjirani, 2015. "Concurrent design of product family and supply chain network considering quality and price," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 18-35.
    15. Yang, Yuxiang & Goodarzi, Shadi & Bozorgi, Ali & Fahimnia, Behnam, 2021. "Carbon cap-and-trade schemes in closed-loop supply chains: Why firms do not comply?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    16. Caiquan Duan & Guoyi Xiu & Fengmin Yao, 2019. "Multi-Period E-Closed-Loop Supply Chain Network Considering Consumers’ Preference for Products and AI-Push," Sustainability, MDPI, vol. 11(17), pages 1-32, August.
    17. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon & Zhang, Abraham, 2018. "Agribusiness supply chain risk management: A review of quantitative decision models," Omega, Elsevier, vol. 79(C), pages 21-42.
    18. Yamada, Tadashi & Imai, Koji & Nakamura, Takamasa & Taniguchi, Eiichi, 2011. "A supply chain-transport supernetwork equilibrium model with the behaviour of freight carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 887-907.
    19. Almaraj, Ismail I. & Trafalis, Theodore B., 2019. "An integrated multi-echelon robust closed- loop supply chain under imperfect quality production," International Journal of Production Economics, Elsevier, vol. 218(C), pages 212-227.
    20. Hamdouch, Younes & Ghoudi, Kilani, 2020. "A Supply Chain Equilibrium Model with General Price-Dependent Demand," Operations Research Perspectives, Elsevier, vol. 7(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:53:y:2019:i:4:p:1196-1212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.