IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v56y2013icp132-138.html
   My bibliography  Save this article

Effects of group sensitivity on cooperation in N-person snowdrift game with dynamic grouping

Author

Listed:
  • Shi, Yong-Dong
  • Zhong, Li-Xin
  • Xu, Wen-Juan

Abstract

In nature and society, individuals are often tempted to exploit free-riding opportunities. Previous studies have shown that, without additional measures like spatially restricted interactions and costly punishment, defection should be more prevalent than cooperation. By incorporating group sensitivity and size adjustable interacting groups into the N-person snowdrift game, we have studied the coevolution of the preferred group sizes and the frequencies of cooperators. It is found that the widespread of cooperation is closely related to the degree of an individual’s group sensitivity. In comparison with a weak or a strong sensitivity, a moderate group sensitivity can greatly promote cooperation. With the rise of the group sensitivity, the step-like changes of the frequencies of cooperators and the average preferred group sizes are found. A theoretical analysis reveals that an individual’s group sensitivity may lead to a decrease in the preferred group size and accordingly an increase in cooperation. A functional relation between the frequencies of cooperators and the average preferred group sizes is found.

Suggested Citation

  • Shi, Yong-Dong & Zhong, Li-Xin & Xu, Wen-Juan, 2013. "Effects of group sensitivity on cooperation in N-person snowdrift game with dynamic grouping," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 132-138.
  • Handle: RePEc:eee:chsofr:v:56:y:2013:i:c:p:132-138
    DOI: 10.1016/j.chaos.2013.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077913001380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2013.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manapat, Michael L. & Nowak, Martin A. & Rand, David G., 2013. "Information, irrationality, and the evolution of trust," Journal of Economic Behavior & Organization, Elsevier, vol. 90(S), pages 57-75.
    2. Zhong, Li-Xin & Qiu, Tian & Shi, Yong-Dong, 2012. "Limitation of network inhomogeneity in improving cooperation in coevolutionary dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2322-2329.
    3. Zhong, Li-Xin & Xu, Wen-Juan & Ren, Fei & Shi, Yong-Dong, 2013. "Coupled effects of market impact and asymmetric sensitivity in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2139-2149.
    4. Zhong, Li-Xin & Xu, Wen-Juan & Shi, Yong-Dong & Qiu, Tian, 2013. "Coupled dynamics of mobility and pattern formation in optional public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 47(C), pages 18-26.
    5. Zhong, Li-Xin & Ren, Fei & Qiu, Tian & Xu, Jiang-Rong & Chen, Bi-Hui & Liu, Cai-Feng, 2010. "Effects of attachment preferences on coevolution of opinions and networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2557-2565.
    6. Li-Xin Zhong & Wen-Juan Xu & Fei Ren & Yong-Dong Shi, 2012. "Coupled effects of market impact and asymmetric sensitivity in financial markets," Papers 1209.3399, arXiv.org, revised Jan 2013.
    7. Matthijs van Veelen & Martin A. Nowak, 2011. "Selection for positive illusions," Nature, Nature, vol. 477(7364), pages 282-283, September.
    8. Perc, Matjaž & Grigolini, Paolo, 2013. "Collective behavior and evolutionary games – An introduction," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 1-5.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Zheng-Hong & Huang, Yi-Jie & Gu, Zhi-Yang & Li-Gao,, 2018. "Multigames with social punishment and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 164-170.
    2. Zhong, Li-Xin & Xu, Wen-Juan & He, Yun-Xin & Zhong, Chen-Yang & Chen, Rong-Da & Qiu, Tian & Shi, Yong-Dong & Ren, Fei, 2017. "A generalized public goods game with coupling of individual ability and project benefit," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 73-80.
    3. Ye, Wenxing & Fan, Suohai, 2017. "Evolutionary snowdrift game with rational selection based on radical evaluation," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 310-317.
    4. Deng, Zhenghong & Huang, Yijie & Gu, Zhiyang & Deng, Zhilong & Xu, Jiwei, 2018. "The evolution of cooperation in spatial multigame with voluntary participation," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 41-46.
    5. Zhong, Li-Xin & Xu, Wen-Juan & Chen, Rong-Da & Zhong, Chen-Yang & Qiu, Tian & Shi, Yong-Dong & Wang, Li-Liang, 2016. "A generalized voter model with time-decaying memory on a multilayer network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 95-105.
    6. Li-Xin Zhong & Wen-Juan Xu & Yun-Xin He & Chen-Yang Zhong & Rong-Da Chen & Tian Qiu & Yong-Dong Shi & Fei Ren, 2017. "A generalized public goods game with coupling of individual ability and project benefit," Papers 1702.07423, arXiv.org, revised May 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Li-Xin & Xu, Wen-Juan & Chen, Rong-Da & Zhong, Chen-Yang & Qiu, Tian & Ren, Fei & He, Yun-Xing, 2018. "Self-reinforcing feedback loop in financial markets with coupling of market impact and momentum traders," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 301-310.
    2. Trenchard, Hugh, 2015. "The peloton superorganism and protocooperative behavior," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 179-192.
    3. Zhang, Yan, 2013. "The impact of other-regarding tendencies on the spatial vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 209-215.
    4. Keser, Claudia & Späth, Maximilian, 2021. "The value of bad ratings: An experiment on the impact of distortions in reputation systems," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 95(C).
    5. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    6. Tatsuya Sasaki, 2014. "The Evolution of Cooperation Through Institutional Incentives and Optional Participation," Dynamic Games and Applications, Springer, vol. 4(3), pages 345-362, September.
    7. Wang, Chaoqian & Sun, Chengbin, 2023. "Public goods game across multilayer populations with different densities," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Paul Rauwolf & Joanna J. Bryson, 2018. "Expectations of Fairness and Trust Co-Evolve in Environments of Partial Information," Dynamic Games and Applications, Springer, vol. 8(4), pages 891-917, December.
    9. Askar, S.S. & Alnowibet, K., 2016. "Nonlinear oligopolistic game with isoelastic demand function: Rationality and local monopolistic approximation," Chaos, Solitons & Fractals, Elsevier, vol. 84(C), pages 15-22.
    10. Di, Changyan & Zhou, Qingguo & Shen, Jun & Wang, Jinqiang & Zhou, Rui & Wang, Tianyi, 2023. "The coupling effect between the environment and strategies drives the emergence of group cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    11. Yan, Shiqing, 2017. "The evolution of human mobility based on the public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 69-76.
    12. Huang, Chengdai & Cao, Jinde & Xiao, Min, 2016. "Hybrid control on bifurcation for a delayed fractional gene regulatory network," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 19-29.
    13. Tang, Biao & Xiao, Yanni, 2015. "Bifurcation analysis of a predator–prey model with anti-predator behaviour," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 58-68.
    14. Li-Xin Zhong & Wen-Juan Xu & Ping Huang & Chen-Yang Zhong & Tian Qiu, 2013. "Self-organization and phase transition in financial markets with multiple choices," Papers 1312.0690, arXiv.org, revised Jun 2014.
    15. Zhong, Li-Xin & Xu, Wen-Juan & Shi, Yong-Dong & Qiu, Tian, 2013. "Coupled dynamics of mobility and pattern formation in optional public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 47(C), pages 18-26.
    16. Corina E. Tarnita, 2015. "Fairness and Trust in Structured Populations," Games, MDPI, vol. 6(3), pages 1-17, July.
    17. Uchida, Satoshi & Sasaki, Tatsuya, 2013. "Effect of assessment error and private information on stern-judging in indirect reciprocity," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 175-180.
    18. Niu, Zhenxi & Xu, Jiwei & Dai, Dameng & Liang, Tairan & Mao, Deming & Zhao, Dawei, 2018. "Rational conformity behavior can promote cooperation in the prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 92-96.
    19. Hadzibeganovic, Tarik & Stauffer, Dietrich & Han, Xiao-Pu, 2018. "Interplay between cooperation-enhancing mechanisms in evolutionary games with tag-mediated interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 676-690.
    20. Valverde, Pablo A. & da Silva, Roberto & Stock, Eduardo V., 2017. "Global oscillations in the Optional Public Goods Game under spatial diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 61-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:56:y:2013:i:c:p:132-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.