IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v198y2025ics0960077925005041.html
   My bibliography  Save this article

Thermodynamic analysis of diverse percolation transitions

Author

Listed:
  • Moon, Seonghyeon
  • Cho, Young Sul

Abstract

This work extends the thermodynamic analysis of random bond percolation to explosive and hybrid percolation models. We show that this thermodynamic analysis is well applicable to both explosive and hybrid percolation models by using the critical exponents α and δ obtained from scaling relations with previously measured values of β and γ within the error range. As a result, Rushbrooke inequality holds as an equality, α+2β+γ=2, in both explosive and hybrid percolation models, where α>0 leads to the divergence of specific heats at the critical points. Remarkably, entropy clearly reveals a continuous decrease even in a finite-sized explosive percolation model, unlike the order parameter. In contrast, entropy decreases discontinuously during a discontinuous transition in a hybrid percolation model, resembling the heat outflow during discontinuous transitions in thermal systems.

Suggested Citation

  • Moon, Seonghyeon & Cho, Young Sul, 2025. "Thermodynamic analysis of diverse percolation transitions," Chaos, Solitons & Fractals, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925005041
    DOI: 10.1016/j.chaos.2025.116491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925005041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:198:y:2025:i:c:s0960077925005041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.