IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925004102.html
   My bibliography  Save this article

An agent-based model for simulating cooperative behavior in crowd evacuation during toxic gas terrorist attacks

Author

Listed:
  • Lu, Peng
  • Li, Yufei

Abstract

Toxic gas leaks pose severe threats to public safety and societal stability, leading to large-scale casualties and social panic. This paper focuses on crowd evacuation behavior during toxic gas leak incidents, proposing an evacuation model that combines Computational Fluid Dynamics (CFD) and Agent-Based Modeling (ABM). By introducing a helping mechanism among agents with prosocial personalities, the study examines the impact of the prosocial personality ratio (p) on evacuation time, fatalities, and severe injuries. Subsequently, the effects of the p under varying conditions, such as total population size and evacuation response time, are explored. Additionally, a Random Forest model is employed to accurately predict evacuation risks, and the NSGA-III multi-objective optimization algorithm is utilized to identify the optimal range of p across different scenarios. The results indicate that a reasonable proportion of prosocial personalities can significantly reduce fatality rates and enhance overall evacuation efficiency. However, an excessively high proportion of prosocial individuals may increase crowd casualties due to extended delays caused by helping behaviors. This study contributes to the body of knowledge on public safety, provides methodological references for developing evacuation strategies during toxic gas diffusion incidents, and offers guidance for future emergency management practices.

Suggested Citation

  • Lu, Peng & Li, Yufei, 2025. "An agent-based model for simulating cooperative behavior in crowd evacuation during toxic gas terrorist attacks," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004102
    DOI: 10.1016/j.chaos.2025.116397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925004102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kunxiang Deng & Qingyong Zhang & Hang Zhang & Peng Xiao & Jiahua Chen, 2022. "Optimal Emergency Evacuation Route Planning Model Based on Fire Prediction Data," Mathematics, MDPI, vol. 10(17), pages 1-23, September.
    2. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, IberĂȘ L. & Szezech Jr, JosĂ© D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Dingding Yang & Yu Zheng & Kai Peng & Lidong Pan & Juan Zheng & Baojing Xie & Bohong Wang, 2022. "Characteristics and Statistical Analysis of Large and above Hazardous Chemical Accidents in China from 2000 to 2020," IJERPH, MDPI, vol. 19(23), pages 1-27, November.
    4. Yaping Ma & Xiaoying Liu & Feizhou Huo & Hui Li, 2022. "Analysis of Cooperation Behaviors and Crowd Dynamics during Pedestrian Evacuation with Group Existence," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    5. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    6. Chen, Chang-Kun & Li, Jian & Zhang, Dong, 2012. "Study on evacuation behaviors at a T-shaped intersection by a force-driving cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2408-2420.
    7. Lu, Peng & Wen, Feier & Li, Yan & Chen, Dianhan, 2021. "Multi-agent modeling of crowd dynamics under mass shooting cases," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    8. Yuan, Shuaiqi & Cai, Jitao & Reniers, Genserik & Yang, Ming & Chen, Chao & Wu, Jiansong, 2022. "Safety barrier performance assessment by integrating computational fluid dynamics and evacuation modeling for toxic gas leakage scenarios," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Song, Chengcheng & Shao, Quan & Zhu, Pei & Dong, Min & Yu, Wenfei, 2023. "An emergency aircraft evacuation simulation considering passenger overtaking and luggage retrieval," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Peng & Li, Yufei, 2025. "Agent-based fire evacuation model using social learning theory and intelligent optimization algorithms," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    2. Guo, Chenglin & Huo, Feizhou & Li, Yufei & Li, Chao & Zhang, Jun, 2024. "An evacuation model considering pedestrian crowding and stampede under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    3. Ding, Zhikun & Xu, Shengqu & Xie, Xiaofeng & Zheng, Kairui & Wang, Daochu & Fan, Jianhao & Li, Hong & Liao, Longhui, 2024. "A building information modeling-based fire emergency evacuation simulation system for large infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. He, Zhichao & Shen, Kaixin & Lan, Meng & Weng, Wenguo, 2024. "An evacuation path planning method for multi-hazard accidents in chemical industries based on risk perception," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Guo, Chenglin & Huo, Feizhou & Deng, Shihan & Huang, Jianan & Zhang, Wei, 2024. "An evacuation model considering pedestrian group behavior under violent attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 656(C).
    6. Yu, Aokun & Bu, Haichao & Luan, Tianyi & Gai, Wenmei, 2025. "Integrated multi-agent-based outpatient building fire response modeling for risk-driven resource use and retrofitting strategies: A case study," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    7. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Faizul Chasanah & Hiroyuki Sakakibara, 2022. "Implication of Mutual Assistance Evacuation Model to Reduce the Volcanic Risk for Vulnerable Society: Insight from Mount Merapi, Indonesia," Sustainability, MDPI, vol. 14(13), pages 1-23, July.
    9. Lian, Zheng & Zhou, Zhi-Jie & Hu, Chang-Hua & Wang, Jie & Zhang, Chun-Chao & Zhang, Chao-Li, 2024. "A health assessment method with attribute importance modeling for complex systems using belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    10. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    11. Jiaying Qin & Sasa Ma & Lei Zhang & Qianling Wang & Guoce Feng, 2022. "Modeling and Simulation for Non-Motorized Vehicle Flow on Road Based on Modified Social Force Model," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    12. Li, Shuying & Zhuang, Jun & Shen, Shifei & Wang, Jia, 2017. "Driving-forces model on individual behavior in scenarios considering moving threat agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 127-140.
    13. Ling Yin & Jie Chen & Hao Zhang & Zhile Yang & Qiao Wan & Li Ning & Jinxing Hu & Qi Yu, 2020. "Improving emergency evacuation planning with mobile phone location data," Environment and Planning B, , vol. 47(6), pages 964-980, July.
    14. Feng, Xinhang & Jiang, Yanli & Gai, Wenmei, 2024. "Rural community response to accidental toxic gas release: An individual emergency response model during self-organized evacuations," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    15. Liu, Yixue & Mao, Zhanli, 2022. "An experimental study on the critical state of herd behavior in decision-making of the crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    16. Khan, Junaid Iqbal & Ullah, Farman & Lee, Sungchang, 2022. "Attention based parameter estimation and states forecasting of COVID-19 pandemic using modified SIQRD Model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    17. Guan, Junbiao & Wang, Kaihua, 2019. "Towards pedestrian room evacuation with a spatial game," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 492-501.
    18. Zhang, Yanping & Cai, Baoping & Zhao, Yixin & Gao, Chuntan & Liu, Yiliu & Gao, Lei & Liu, Guijie, 2024. "Joint multi-objective optimization method for emergency maintenance and condition-based maintenance: Subsea control system as a case study," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    19. Golshani, Feze & Fang, Liping, 2025. "A fire navigation model: Considering travel time, impact of fire, and congestion severity," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
    20. Li, Yongxing & Yang, Xiaoxia & Wang, Zijia & Chen, Liang & Chen, Yanyan, 2022. "Lane-design for mixed pedestrian flow in T-shaped passage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.