Author
Listed:
- Ali, Aatif
- Sun, Mei
- Ali, Mohamed R.
Abstract
Vaccine coverage and non-pharmaceutical interventions have great importance relative to public health in the current scenario of pandemic throughout the world. A compartmental model for assessing the vaccine and community contact rate (in light of social-distancing and isolation) coverage in symptomatic and asymptomatic public. In most biological phenomena, particularly infectious diseases, fractional models capture crossover behavior and provide deeper insight. Also, the disease informed neural network embedded with the proposed model to deduce the temporal evolution dynamics of the COVID-19 model. The Reproduction number determines the severity of disease computed by the next-generation approach. The mathematical model assesses the dynamics of Corona-virus based on biological parameters, which are estimated from recorded data by the least square curve technique. The proposed model shows precise predictions of the real cases. The COVID-19 data of Pakistan, suggest that the vaccine efficacy is found to be useful with adoption of moderately (50% reduction of baseline value) could prevent 70%–80% of the projected infected persons over 100 days. While the contact rates impact on epidemiological outcomes is highly nonlinear, which indicates the high value to eradicate the pandemic if the underlying contact rate is relatively low. Our study urge that the contact rates (social distancing and isolation etc.) and vaccine coverage with high efficacy has probably high value in curtailing the burden of the pandemic. Additionally, we discuss how neural networks may predict disease spread and do so with the robustness and effectiveness of neural networks. The deep learning method predicts the dynamics with forecast their progression and demonstrates the high potential in combination with compartmental model. Furthermore, the results demonstrate that neural networks outperform traditional approaches in forecasting complex disease dynamics, determining crucial thresholds, and refining suppression strategies, offering important public health insights. Additionally, this strategy opens the door for more extensive artificial intelligence integration in healthcare optimization.
Suggested Citation
Ali, Aatif & Sun, Mei & Ali, Mohamed R., 2025.
"Data analysis of dynamical system for the optimization of disease dynamics through Neural Networks Paradigm,"
Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
Handle:
RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925002978
DOI: 10.1016/j.chaos.2025.116284
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925002978. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.