IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925002619.html
   My bibliography  Save this article

Bifurcation analysis of a non linear 6D financial system with three time delay feedback

Author

Listed:
  • Phukan, Animesh
  • Sarmah, Hemanta Kumar

Abstract

Nonlinear financial systems capture real-world economic and financial complexities, enabling deeper insights into stock market crashes, feedback mechanisms, currency devaluations, and emergent behaviors. The purpose of this study is to investigate the structure of a nonlinear financial system that incorporates interest rates, investment demand, price index, GDP growth rate, unemployment rate, and vacancy availability rate into the system. Time delays in financial systems describe the time gap between economic decisions and real-life implementations. In this study, three different time delays are incorporated in investment demand, GDP growth, and vacancy creation. We consider four cases to describe the intrinsic dynamics of economic factors. First, we consider the system without time delays, and branch point bifurcation, transcritical bifurcation, and Hopf bifurcation for different parameters, such as government debt, novice entrepreneurs, and capital stock, are investigated. Secondly, this research highlights the sensitivity of the financial system to the delay in vacancy creation, and it has been noted that when the delay in vacancy formation increases, it becomes more challenging for the six state variables to be stable. Next, we consider the time delay in GDP and investigate the stability of the system for the time lag. Lastly, we consider all three time delays, and the financial system switches its stability when the delays attain their critical values. The research demonstrates, through advanced computer simulations, how financial systems may be altered by a change in policy or by an external force or market fluctuations.

Suggested Citation

  • Phukan, Animesh & Sarmah, Hemanta Kumar, 2025. "Bifurcation analysis of a non linear 6D financial system with three time delay feedback," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002619
    DOI: 10.1016/j.chaos.2025.116248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925002619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    2. Li, Qinnan & Li, Ruihong & Huang, Dongmei, 2023. "Dynamic analysis of a new 4D fractional-order financial system and its finite-time fractional integral sliding mode control based on RBF neural network," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Wang, Shaojie & He, Shaobo & Yousefpour, Amin & Jahanshahi, Hadi & Repnik, Robert & Perc, Matjaž, 2020. "Chaos and complexity in a fractional-order financial system with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    4. Sylla, Richard, 2002. "Financial Systems And Economic Modernization," The Journal of Economic History, Cambridge University Press, vol. 62(2), pages 277-292, June.
    5. He, Ke & Shi, Jianping & Fang, Hui, 2024. "Bifurcation and chaos analysis of a fractional-order delay financial risk system using dynamic system approach and persistent homology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 253-274.
    6. Taha Zaghdoudi, 2020. "Threshold Effect in the Relationship Between External Debt and Economic Growth: A Dynamic Panel Threshold Specification," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(2), pages 447-456, June.
    7. By Mohsin S. Khan & Abdelhak S. Senhadji, 2001. "Threshold Effects in the Relationship Between Inflation and Growth," IMF Staff Papers, Palgrave Macmillan, vol. 48(1), pages 1-1.
    8. Johansyah, Muhamad Deni & Sambas, Aceng & Zheng, Song & Benkouider, Khaled & Vaidyanathan, Sundarapandian & Mohamed, Mohamad Afendee & Mamat, Mustafa, 2023. "A novel financial system with one stable and two unstable equilibrium points: Dynamics, coexisting attractors, complexity analysis and synchronization using integral sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Vighneswara Swamy, 2015. "The Dynamics of Government Debt and Economic Growth," IEG Working Papers 359, Institute of Economic Growth.
    10. Yusuf, Abdullahi & Qureshi, Sania & Feroz Shah, Syed, 2020. "Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    11. Ma, Yutian & Li, Wenwen, 2020. "Application and research of fractional differential equations in dynamic analysis of supply chain financial chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    12. Cao, Yanli, 2020. "Chaotic synchronization based on fractional order calculus financial system," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    13. Chian, Abraham C.-L. & Borotto, Felix A. & Rempel, Erico L. & Rogers, Colin, 2005. "Attractor merging crisis in chaotic business cycles," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 869-875.
    14. Eva Kaslik & Mihaela Neamţu & Loredana Flavia Vesa, 2021. "Global Stability Analysis of a Five-Dimensional Unemployment Model with Distributed Delay," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    15. Lin, Xiaoran & Wang, Yachao & Wang, Jifang & Zeng, Wenxian, 2022. "Dynamic analysis and adaptive modified projective synchronization for systems with Atangana-Baleanu-Caputo derivative: A financial model with nonconstant demand elasticity," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    16. Çalış, Yasemin & Demirci, Ali & Özemir, Cihangir, 2022. "Hopf bifurcation of a financial dynamical system with delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 343-361.
    17. Huangen Chen & Lu Yu & Yilin Wang & Miaomei Guo & Karthikeyan Rajagopal, 2021. "Synchronization of a Hyperchaotic Finance System," Complexity, Hindawi, vol. 2021, pages 1-7, March.
    18. G. Kai & W. Zhang & Z. C. Wei & J. F. Wang & A. Akgul, 2017. "Hopf Bifurcation, Positively Invariant Set, and Physical Realization of a New Four-Dimensional Hyperchaotic Financial System," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-13, April.
    19. Xu, Zhao & Sun, Kehui & Wang, Huihai, 2024. "Dynamics and function projection synchronization for the fractional-order financial risk system," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    20. Njike-Tchaptchet, Eric Rostand & Tadmon, Calvin, 2023. "Mathematical modeling of the unemployment problem in a context of financial crisis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 241-262.
    21. Wen, Chunhui & Yang, Jinhai, 2019. "Complexity evolution of chaotic financial systems based on fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 242-251.
    22. Chian, Abraham C.-L. & Rempel, Erico L. & Rogers, Colin, 2006. "Complex economic dynamics: Chaotic saddle, crisis and intermittency," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1194-1218.
    23. Cupák, Andrej & Fessler, Pirmin & Hsu, Joanne W. & Paradowski, Piotr R., 2022. "Investor confidence and high financial literacy jointly shape investments in risky assets," Economic Modelling, Elsevier, vol. 116(C).
    24. Wang, Shaojie & Bekiros, Stelios & Yousefpour, Amin & He, Shaobo & Castillo, Oscar & Jahanshahi, Hadi, 2020. "Synchronization of fractional time-delayed financial system using a novel type-2 fuzzy active control method," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    25. Sara S. Alzaid & Ajay Kumar & Sunil Kumar & Badr Saad T. Alkahtani, 2023. "Chaotic Behavior Of Financial Dynamical System With Generalized Fractional Operator," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(04), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhao & Sun, Kehui & Wang, Huihai, 2024. "Dynamics and function projection synchronization for the fractional-order financial risk system," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    2. Wang, Bo & Liu, Jinping & Alassafi, Madini O. & Alsaadi, Fawaz E. & Jahanshahi, Hadi & Bekiros, Stelios, 2022. "Intelligent parameter identification and prediction of variable time fractional derivative and application in a symmetric chaotic financial system," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    3. Farwah Ali Syed & Kwo-Ting Fang & Adiqa Kausar Kiani & Muhammad Shoaib & Muhammad Asif Zahoor Raja, 2025. "Design of Neuro-Stochastic Bayesian Networks for Nonlinear Chaotic Differential Systems in Financial Mathematics," Computational Economics, Springer;Society for Computational Economics, vol. 65(1), pages 241-270, January.
    4. Li, Qinnan & Li, Ruihong & Huang, Dongmei, 2023. "Dynamic analysis of a new 4D fractional-order financial system and its finite-time fractional integral sliding mode control based on RBF neural network," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Qing Ding & Oumate Alhadji Abba & Hadi Jahanshahi & Madini O. Alassafi & Wen-Hua Huang, 2022. "Dynamical Investigation, Electronic Circuit Realization and Emulation of a Fractional-Order Chaotic Three-Echelon Supply Chain System," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    6. Zhou, Shuang-Shuang & Jahanshahi, Hadi & Din, Qamar & Bekiros, Stelios & Alcaraz, Raúl & Alassafi, Madini O. & Alsaadi, Fawaz E. & Chu, Yu-Ming, 2021. "Discrete-time macroeconomic system: Bifurcation analysis and synchronization using fuzzy-based activation feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Lucas Sagire & Peter W. Muriu, 2021. "Economic Growth and Public Debt Threshold: New Evidence from An Emerging Economy," Journal of Economic Development, The Economic Research Institute, Chung-Ang University, vol. 46(4), pages 105-120.
    8. Bambe Moutsinga, Claude Rodrigue & Pindza, Edson & Maré, Eben, 2021. "Comparative performance of time spectral methods for solving hyperchaotic finance and cryptocurrency systems," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    10. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    11. Chu, Yu-Ming & Bekiros, Stelios & Zambrano-Serrano, Ernesto & Orozco-López, Onofre & Lahmiri, Salim & Jahanshahi, Hadi & Aly, Ayman A., 2021. "Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Bekiros, Stelios & Laarem, Guessas & Mou, Jun & Al-Barakati, Abdullah A. & Jahanshahi, Hadi, 2023. "Heterogeneous agent-based modeling of endogenous boom-bust cycles in financial markets with adaptive expectations and dynamically switching fractions between contrarian and fundamental market entry st," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Bazán Navarro, Ciro Eduardo & Benazic Tomé, Renato Mario, 2024. "Qualitative behavior in a fractional order IS-LM-AS macroeconomic model with stability analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 425-443.
    14. Shoji, Isao & Nozawa, Masahiro, 2022. "Geometric analysis of nonlinear dynamics in application to financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    15. Feryal Abdullah Aladsani & Ghulam Muhammad & Sayed K. Elagan, 2025. "Granular Fuzzy Fractional Financial Systems Governed by Granular Caputo Fractional Derivative," Mathematics, MDPI, vol. 13(8), pages 1-24, April.
    16. Valls, Claudia, 2012. "Rational integrability of a nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 141-146.
    17. Chen, Wei-Ching, 2008. "Dynamics and control of a financial system with time-delayed feedbacks," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1198-1207.
    18. Son, Woo-Sik & Park, Young-Jai, 2011. "Delayed feedback on the dynamical model of a financial system," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 208-217.
    19. Saiki, Y. & Chian, A.C.L. & Yoshida, H., 2011. "Economic intermittency in a two-country model of business cycles coupled by investment," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 418-428.
    20. Muhamad Deni Johansyah & Aceng Sambas & Saleh Mobayen & Behrouz Vaseghi & Saad Fawzi Al-Azzawi & Sukono & Ibrahim Mohammed Sulaiman, 2022. "Dynamical Analysis and Adaptive Finite-Time Sliding Mode Control Approach of the Financial Fractional-Order Chaotic System," Mathematics, MDPI, vol. 11(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.