IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v128y2019icp242-251.html
   My bibliography  Save this article

Complexity evolution of chaotic financial systems based on fractional calculus

Author

Listed:
  • Wen, Chunhui
  • Yang, Jinhai

Abstract

Economics and finance are extremely complex nonlinear systems involving human subjects with many subjective factors. There are numerous attribute properties that cannot be described by the theory of integer-order calculus; so it is necessary to theoretically study the internal complexity of the economic and financial system using the method of bifurcation and chaos of fractional nonlinear dynamics. Fractional calculus can more accurately describe the existence characteristics of complex physical, financial or medical systems, and can truly reflect the actual state properties of these systems; therefore the application of fractional order in chaotic systems has great significance to study the mathematical analysis of nonlinear dynamic systems, and the use of fractional calculus theory to model the complexity evolution of fractional chaotic financial systems has attracted more and more scholars’ attention. On the basis of summarizing and analyzing previous studies, this paper qualitatively analyzes the stability of equilibrium solution of fractional-order chaotic financial system, and explores the complexity evolution law of the financial system near the equilibrium point and the occurring conditions of asymptotic chaotic state near this equilibrium point, and simulate the complexity evolution of chaotic financial systems using the Admas-Bashforth-Moulton finite difference method for mapping, phase diagram and time series graph. The research results of this paper provide a reference for government to formulate relevant economic policies, decision-making or further research on the complexity evolution of fractional-order chaotic financial systems.

Suggested Citation

  • Wen, Chunhui & Yang, Jinhai, 2019. "Complexity evolution of chaotic financial systems based on fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 242-251.
  • Handle: RePEc:eee:chsofr:v:128:y:2019:i:c:p:242-251
    DOI: 10.1016/j.chaos.2019.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919303157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Junru, 2020. "On a linearity between fractal dimension and order of fractional calculus in Hölder space," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    2. Li, Qinnan & Li, Ruihong & Huang, Dongmei, 2023. "Dynamic analysis of a new 4D fractional-order financial system and its finite-time fractional integral sliding mode control based on RBF neural network," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Bekiros, Stelios & Yao, Qijia & Mou, Jun & Alkhateeb, Abdulhameed F. & Jahanshahi, Hadi, 2023. "Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Bazán Navarro, Ciro Eduardo & Benazic Tomé, Renato Mario, 2024. "Qualitative behavior in a fractional order IS-LM-AS macroeconomic model with stability analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 425-443.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:128:y:2019:i:c:p:242-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.