IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000098.html
   My bibliography  Save this article

A complex network approach to identifying and characterizing vital voids in the particle packing of caved ore and rock

Author

Listed:
  • Sun, Hao
  • Zhou, Shenggui
  • Jia, Junze
  • Zhao, Lishan
  • Wei, Lichang
  • Wang, Xueqian
  • Fu, Shigen
  • Qin, Xuan
  • Sun, Wei

Abstract

The particle packing system of caved ore and rock can be characterized as a complex system consisting of both a particle phase and a void phase. This paper focuses primarily on the void network as the main subject of research. After analyzing the statistical characteristics of both voids and throats, we employ a complex network approach to identify vital voids. Furthermore, we investigate the geometric characteristics, spatial distribution, and connectivity of vital voids. The results indicate that: (1) The distributions of void radius and throat radius, which are influenced by varying particle gradation and void rate, conform to a Gaussian distribution. In contrast, the distribution of the void shape factor displays a long-tail distribution. (2) The void network present adheres to a scale-free network model that exhibits small-world characteristics. Additionally, vital voids are characterized by a large average size, elevated Closeness centrality, and a low Clustering coefficient. (3) There exists a strong positive correlation between the Betweenness centrality of vital voids and void radius, Degree, and shape factor. In contrast, the Clustering coefficient exhibits a negative correlation with Betweenness centrality, void radius, Degree, and shape factor, while the correlation between Closeness centrality and each of these indices is relatively weak.

Suggested Citation

  • Sun, Hao & Zhou, Shenggui & Jia, Junze & Zhao, Lishan & Wei, Lichang & Wang, Xueqian & Fu, Shigen & Qin, Xuan & Sun, Wei, 2025. "A complex network approach to identifying and characterizing vital voids in the particle packing of caved ore and rock," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000098
    DOI: 10.1016/j.chaos.2025.115996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.115996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
    2. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    3. Feng, Jian Rui & Zhao, Mengke & Yu, Guanghui & Zhang, Jiaqing & Lu, Shouxiang, 2023. "Dynamic risk analysis of accidents chain and system protection strategy based on complex network and node structure importance," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    4. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    5. Kooij, Robert E. & Sørensen, Nikolaj Horsevad & Bouffanais, Roland, 2021. "Tuning the clustering coefficient of generalized circulant networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    6. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengyue Zhang & Minmin Li & Ding Ma & Renzhong Guo, 2021. "How Different Are Population Movements between Weekdays and Weekends: A Complex-Network-Based Analysis on 36 Major Chinese Cities," Land, MDPI, vol. 10(11), pages 1-14, October.
    2. Nikolaj Horsevad & David Mateo & Robert E. Kooij & Alain Barrat & Roland Bouffanais, 2022. "Transition from simple to complex contagion in collective decision-making," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Li, Heyang & Zeng, An, 2022. "Improving recommendation by connecting user behavior in temporal and topological dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    4. Feng, Jian Rui & Zhao, Meng-ke & Lu, Shou-xiang, 2024. "Accident spread and risk propagation mechanism in complex industrial system network," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    6. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    7. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    8. Peng, Xiangzhen & Zheng, Chengliang & Wang, Yidi & Cui, Xiaohui & Shen, Zhidong, 2025. "Double layer blockchain-assisted trusted data flow model for industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    9. David Kofoed Wind & Piotr Sapiezynski & Magdalena Anna Furman & Sune Lehmann, 2016. "Inferring Stop-Locations from WiFi," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    10. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    12. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    13. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    14. Jaspe U Martínez-González & Alejandro P. Riascos & José L Mateos, 2024. "Pattern detection in the vehicular activity of bus rapid transit systems," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-18, October.
    15. Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Parametric Forecast of Solar Energy over Time by Applying Machine Learning Techniques: Systematic Review," Energies, MDPI, vol. 18(6), pages 1-51, March.
    16. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    17. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    18. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    19. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    20. Pawanesh Pawanesh & Charu Sharma & Niteesh Sahni, 2025. "Analyzing Communicability and Connectivity in the Indian Stock Market During Crises," Papers 2502.08242, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.