Theoretical analysis and adaptive high-energy orbit control of symmetric tri-stable energy harvesters with nonlinear damping
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2024.115942
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).
- Fang, Shitong & Du, Houfan & Yan, Tao & Chen, Keyu & Li, Zhiyuan & Ma, Xiaoqing & Lai, Zhihui & Zhou, Shengxi, 2024. "Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting," Applied Energy, Elsevier, vol. 356(C).
- Li, Qinnan & Li, Ruihong & Huang, Dongmei, 2023. "Dynamic analysis of a new 4D fractional-order financial system and its finite-time fractional integral sliding mode control based on RBF neural network," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
- Yu, Gang & He, Lipeng & Wang, Hongxin & Sun, Lei & Zhang, Zhonghua & Cheng, Guangming, 2023. "Research of rotating piezoelectric energy harvester for automotive motion," Renewable Energy, Elsevier, vol. 211(C), pages 484-493.
- Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
- Zhou, Shengxi & Cao, Junyi & Inman, Daniel J. & Lin, Jing & Liu, Shengsheng & Wang, Zezhou, 2014. "Broadband tristable energy harvester: Modeling and experiment verification," Applied Energy, Elsevier, vol. 133(C), pages 33-39.
- Hamdi, Mustapha & Belhaq, Mohamed, 2009. "Self-excited vibration control for axially fast excited beam by a time delay state feedback," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 521-532.
- Yu, Han & Hou, Chengwei & Shan, Xiaobiao & Zhang, Xingxu & Song, Henan & Zhang, Xiaofan & Xie, Tao, 2022. "A novel seesaw-like piezoelectric energy harvester for low frequency vibration," Energy, Elsevier, vol. 261(PB).
- Gong, Xulu & Xu, Pengfei & Liu, Di & Zhou, Biliu, 2023. "Stochastic resonance of multi-stable energy harvesting system with high-order stiffness from rotational environment," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Lou, Hu & Wang, Tao & Zhu, Shiqiang, 2022. "Design, modeling and experiments of a novel biaxial-pendulum vibration energy harvester," Energy, Elsevier, vol. 254(PA).
- Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
- Esteban, Miguel & Leary, David, 2012. "Current developments and future prospects of offshore wind and ocean energy," Applied Energy, Elsevier, vol. 90(1), pages 128-136.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Hui & Wang, LiGuo, 2023. "Numerical study on self-power supply of large marine monitoring buoys: Wave-excited vibration energy harvesting and harvester optimization," Energy, Elsevier, vol. 285(C).
- Sun, Ruqi & Ma, He & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "A direction-adaptive ultra-low frequency energy harvester with an aligning turntable," Energy, Elsevier, vol. 311(C).
- Zhang, Li & Kan, Junwu & Lin, Shijie & Liao, Weilin & Yang, Jianwen & Liu, Panpan & Wang, Shuyun & Zhang, Zhonghua, 2024. "Design and performance evaluation of a pendulous piezoelectric rotational energy harvester through magnetic plucking of a fan-shaped hanging composite plate," Renewable Energy, Elsevier, vol. 222(C).
- Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
- Cong, Moyue & Dong, Wei & Gao, Yongzhuo & Long, Yi & Wang, Weidong & Dong, Hui, 2024. "A new type of time-varying terminal load energy harvester: Design, simulation, and experiments," Energy, Elsevier, vol. 313(C).
- Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
- Wang, Chen & Chai, Hongfei & Li, Gaolei & Wang, Wei & Tian, Ruilan & Wen, Gui-Lin & Wang, Chun H. & Lai, Siu-Kai, 2024. "Boosting biomechanical and wave energy harvesting efficiency through a novel triple hybridization of piezoelectric, electromagnetic, and triboelectric generators," Applied Energy, Elsevier, vol. 374(C).
- Tang, Tianyi & Li, Yunfei & Huang, Manjuan & Mei, Mingqi & Wang, Zizhao & Zha, Fusheng & Sun, Lining & Liu, Huicong, 2025. "Ultra-low-frequency and high-power Mag-Boost mechanism for ocean wave energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
- Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Cao, Junyi & Liao, Wei-Hsin, 2022. "Design of a high-performance piecewise bi-stable piezoelectric energy harvester," Energy, Elsevier, vol. 241(C).
- Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Wang, Ping, 2018. "Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation," Applied Energy, Elsevier, vol. 220(C), pages 856-875.
- Zhang, Jinhui & Qin, Lifeng, 2019. "A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism," Applied Energy, Elsevier, vol. 240(C), pages 26-34.
- Xiang, Xiaoyi & Liu, Sijin & Yang, Qian & Shen, Hui & Song, Rujun, 2025. "Dual-coupling beams energy harvester for random vibrations and human motions: Modeling and experimental validation," Energy, Elsevier, vol. 322(C).
- Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Yao, Ye & Wang, Ping & Sun, Yuhua & Xiao, Jieling, 2020. "Modeling and experimental verification of a fractional damping quad-stable energy harvesting system for use in wireless sensor networks," Energy, Elsevier, vol. 190(C).
- Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Wolszczak, Piotr & Yurchenko, Daniil, 2022. "Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness," Applied Energy, Elsevier, vol. 307(C).
- Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
- Liu, Weiqun & Qin, Gang & Zhu, Qiao & Hu, Guangdi, 2018. "Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 1292-1303.
- Zhang, Zutao & Zhang, Xingtian & Rasim, Yagubov & Wang, Chunbai & Du, Bing & Yuan, Yanping, 2016. "Design, modelling and practical tests on a high-voltage kinetic energy harvesting (EH) system for a renewable road tunnel based on linear alternators," Applied Energy, Elsevier, vol. 164(C), pages 152-161.
- Khazaee, Majid & Huber, John E. & Rosendahl, Lasse & Rezania, Alireza, 2021. "The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements," Applied Energy, Elsevier, vol. 285(C).
- Shuhao Chang & Qiancheng Wang & Haihua Hu & Zijian Ding & Hansen Guo, 2018. "An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study," Energies, MDPI, vol. 12(1), pages 1-20, December.
- Zhao, Dong & Liu, Ying, 2020. "A prototype for light-electric harvester based on light sensitive liquid crystal elastomer cantilever," Energy, Elsevier, vol. 198(C).
More about this item
Keywords
Tri-stable energy harvesters; Adaptive sliding mode control; Lindstedt-Poincaré method; Theoretical solutions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077924014942. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.