IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s096007792401169x.html
   My bibliography  Save this article

Pseudo-phase difference guides additional connection between oscillators for synchrony

Author

Listed:
  • Lee, Daekyung
  • Park, Jong-Min
  • Kim, Heetae

Abstract

In complex systems, synchronization plays a pivotal role underlying the coherent operation of various systems (networks) ranging from biology to technology. In a dynamic network, a link between nodes can be newly created implementing a new interaction in the network. Therefore, it is of great importance to understand how to enhance the synchronized state of a system especially when adding a new connection. This study investigates ways to enhance synchronization through optimal link addition, employing the Synchrony Alignment Function (SAF) and Adjusted Lyapunov Function (ALF) that assess the effects of new connections. By applying the ALF method to compare potential link additions, we identify two key factors that contribute to the effectiveness of link addition: the steady-state phase in the linearized dynamics, which we named the pseudo-steady-state phase, and the structural attributes of the network. By applying these methods across diverse network topologies, including Barabási–Albert, Erdős–Rényi, and Cayley tree models, we uncover the dominant role of the phase difference in promoting synchronization. This exploration offers new insights into the dynamics of network synchronization, highlighting the critical impact of specific factors on the efficacy of enhancing network coherence. Our findings also lay a foundation for further research into targeted strategies for network optimization.

Suggested Citation

  • Lee, Daekyung & Park, Jong-Min & Kim, Heetae, 2024. "Pseudo-phase difference guides additional connection between oscillators for synchrony," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401169x
    DOI: 10.1016/j.chaos.2024.115617
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792401169X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    2. Lei, Yong & Xu, Xin-Jian & Wang, Xiaofan & Zou, Yong & Kurths, Jürgen, 2023. "A new criterion for optimizing synchrony of coupled oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. G. Filatrella & A. H. Nielsen & N. F. Pedersen, 2008. "Analysis of a power grid using a Kuramoto-like model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(4), pages 485-491, February.
    4. Moreno Vega, Yamir & Vázquez-Prada, Miguel & F. Pacheco, Amalio, 2004. "Fitness for synchronization of network motifs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 279-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    2. Zhang, Guidong & Li, Zhong & Zhang, Bo & Halang, Wolfgang A., 2013. "Understanding the cascading failures in Indian power grids with complex networks theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3273-3280.
    3. Zou, Yanli & Wang, Ruirui & Gao, Zheng, 2020. "Improve synchronizability of a power grid through power allocation and topology adjustment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    4. Salehi, Mostafa & Rabiee, Hamid R. & Jalili, Mahdi, 2010. "Motif structure and cooperation in real-world complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5521-5529.
    5. Li, Chunguang, 2009. "Memorizing morph patterns in small-world neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(2), pages 240-246.
    6. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Alquhayz, Hani & Abdalla, Manal Z.M. & Alhagyan, Mohammed & Gargouri, Ameni & Shoaib, Muhammad, 2023. "Design of intelligent hybrid NAR-GRNN paradigm for fractional order VDP chaotic system in cardiac pacemaker with relaxation oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    7. Zheng, Song & Yuan, Liguo, 2019. "Nonperiodically intermittent pinning synchronization of complex-valued complex networks with non-derivative and derivative coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 587-605.
    8. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    9. Zhenpeng Li & Ling Ma & Simin Chi & Xu Qian, 2022. "Structural Balance under Weight Evolution of Dynamic Signed Network," Mathematics, MDPI, vol. 10(9), pages 1-21, April.
    10. Dan Braha & Yaneer Bar-Yam, 2007. "The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results," Management Science, INFORMS, vol. 53(7), pages 1127-1145, July.
    11. Faedo, Nicolás & García-Violini, Demián & Ringwood, John V., 2021. "Controlling synchronization in a complex network of nonlinear oscillators via feedback linearisation and H∞-control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    12. Paul Sheridan & Yuichi Yagahara & Hidetoshi Shimodaira, 2008. "A preferential attachment model with Poisson growth for scale-free networks," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 747-761, December.
    13. Ni, Shunjiang & Weng, Wenguo & Zhang, Hui, 2011. "Modeling the effects of social impact on epidemic spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4528-4534.
    14. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    15. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    16. Yang, Qing-Lin & Wang, Li-Fu & Zhao, Guo-Tao & Guo, Ge, 2020. "A coarse graining algorithm based on m-order degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    17. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    18. Wu, Jianshe & Lu, Rui & Jiao, Licheng & Liu, Fang & Yu, Xin & Wang, Da & Sun, Bo, 2013. "Phase transition model for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1287-1301.
    19. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    20. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401169x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.