IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923012961.html
   My bibliography  Save this article

Optimizing LSTM with multi-strategy improved WOA for robust prediction of high-speed machine tests data

Author

Listed:
  • Che, Zhongyuan
  • Peng, Chong
  • Yue, Chenxiao

Abstract

LSTM networks are popular for predicting data with nonlinear and temporal properties. However, it is difficult to select optimal hyperparameters using empirical methods, which can significantly affect their performance and modeling time. To address this, we propose a novel hybrid model called CMAL-WOA-LSTM (CWLM), which utilizes the multi-strategy improved whale optimization algorithm (WOA) to optimize three key hyperparameters of LSTM. Four modifications are introduced to improve the performance of WOA. Circle chaotic map is used for population initialization, and a modified dynamic backward learning strategy improves population diversity. A nonlinear function optimizes iterations to allow global exploration and faster convergence. Lévy Flight updates of feasible solutions using random walks are carried out near the optimal value for each iteration. By conducting benchmarks and comparative analysis, we illustrate the effectiveness and rationale behind the four improvements. Subsequently, we explain our optimization ideas for constructing hybrid models, highlighting their distinctions from traditional deep learning approaches. Moreover, we provide detailed modeling steps for CWLM and elaborate on the relationships of each part within the model. CWLM is compared with five other models using milling force data and wear data from high-speed machine tests. Root Mean Square Error, Mean Absolute Error, Mean Absolute Percentage Error, R-Squared, and computational time are used as error metrics. The results show that CWLM outperforms other models in terms of prediction performance and robustness. CWLM demonstrates improved prediction performance and robustness, making it applicable in a wide range of applications that use LSTM for data prediction.

Suggested Citation

  • Che, Zhongyuan & Peng, Chong & Yue, Chenxiao, 2024. "Optimizing LSTM with multi-strategy improved WOA for robust prediction of high-speed machine tests data," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012961
    DOI: 10.1016/j.chaos.2023.114394
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114394?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.