IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v176y2023ics0960077923010706.html
   My bibliography  Save this article

Adaptive secure synchronization of complex networks under mixed attacks via time-controllable technology

Author

Listed:
  • Zhou, Lili
  • Zhang, Yuhao
  • Tan, Fei
  • Huang, Mingzhe

Abstract

This paper mainly investigates the secure synchronization problem of CPSs (Cyber-Physical Systems) under mixed attack via time-controllable technology. The mixed attacks involved in this paper include the node attacks acting on the node state and the edge attacks acting on the network topology. An adaptive pinning scheme that does not rely on the global information of the network is designed. With the construction of the comparison function, the estimation method for the system settling time under mixed attacks is derived. Moreover, the correlation between the system’s settling time and the attack intensity is obtained, such that the given scheme is applicable to both periodic and aperiodic attacks. Several simulation experiments are finally designed to verify the effectiveness of the proposed scheme.

Suggested Citation

  • Zhou, Lili & Zhang, Yuhao & Tan, Fei & Huang, Mingzhe, 2023. "Adaptive secure synchronization of complex networks under mixed attacks via time-controllable technology," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010706
    DOI: 10.1016/j.chaos.2023.114168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923010706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Lin & Zhang, Chunmei & Zhong, Shouming, 2021. "Synchronization of singular complex networks with time-varying delay via pinning control and linear feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Zhang, Ziwei & Chen, Zongjie & Sheng, Zhang & Li, Dan & Wang, Jing, 2022. "Static output feedback secure synchronization control for Markov jump neural networks under hybrid cyber-attacks," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    3. Li, Zhitao & Tang, Jinjun & Zhao, Chuyun & Gao, Fan, 2023. "Improved centrality measure based on the adapted PageRank algorithm for urban transportation multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Wang, Shuzhan & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Fixed-time synchronization for complex-valued BAM neural networks with time-varying delays via pinning control and adaptive pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Xuan, Deli & Tang, Ze & Feng, Jianwen & Park, Ju H., 2021. "Cluster synchronization of nonlinearly coupled Lur’e networks: Delayed impulsive adaptive control protocols," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Zhou, Ya & Wan, Xiaoxiao & Huang, Chuangxia & Yang, Xinsong, 2020. "Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    7. Ding, Dong & Tang, Ze & Wang, Yan & Ji, Zhicheng, 2021. "Secure synchronization of complex networks under deception attacks against vulnerable nodes," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    8. Du, Feifei & Lu, Jun-Guo, 2021. "New approach to finite-time stability for fractional-order BAM neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Jon M. Kleinberg, 2000. "Navigation in a small world," Nature, Nature, vol. 406(6798), pages 845-845, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Wenshun & Guo, Runan & Wang, Fang, 2024. "Observer-based adaptive neural network control design for nonlinear systems under cyber-attacks through sensor networks," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaning Yu & Ziye Zhang, 2022. "State Estimation for Complex-Valued Inertial Neural Networks with Multiple Time Delays," Mathematics, MDPI, vol. 10(10), pages 1-14, May.
    2. Àlex Arenas & Antonio Cabrales & Leon Danon & Albert Díaz-Guilera & Roger Guimerà & Fernando Vega-Redondo, 2010. "Optimal information transmission in organizations: search and congestion," Review of Economic Design, Springer;Society for Economic Design, vol. 14(1), pages 75-93, March.
    3. Li, Xing-Yu & Wu, Kai-Ning & Liu, Xiao-Zhen, 2023. "Mittag–Leffler stabilization for short memory fractional reaction-diffusion systems via intermittent boundary control," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    4. Ren, Yue & Jiang, Haijun & Hu, Cheng & Chen, Shanshan, 2024. "Synchronization of complex-valued multi-layer coupled systems by asynchronous intermittent event-triggered mechanisms," Applied Mathematics and Computation, Elsevier, vol. 477(C).
    5. Boris Salazar & María del Pilar Castillo, 2008. "Pobreza Urbana Y Exclusión Social De Los Desplazados," Documentos de Trabajo 4500, Universidad del Valle, CIDSE.
    6. Andrea Avena-Koenigsberger & Xiaoran Yan & Artemy Kolchinsky & Martijn P van den Heuvel & Patric Hagmann & Olaf Sporns, 2019. "A spectrum of routing strategies for brain networks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
    7. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    8. Douglas R. White & Jason Owen-Smith & James Moody & Walter W. Powell, 2004. "Networks, Fields and Organizations: Micro-Dynamics, Scale and Cohesive Embeddings," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 95-117, May.
    9. Cowan, Robin & Jonard, Nicolas & Sanditov, Bulat, 2009. "Fits and Misfits: Technological Matching and R&D Networks," MERIT Working Papers 2009-042, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    10. Amos Korman & Efrat Greenwald & Ofer Feinerman, 2014. "Confidence Sharing: An Economic Strategy for Efficient Information Flows in Animal Groups," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-10, October.
    11. Shi, Xiaolin & Adamic, Lada A. & Strauss, Martin J., 2007. "Networks of strong ties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 33-47.
    12. Peter Biddle & Paul England & Marcus Peinado & Bryan Willman, 2003. "The Darknet and the Future of Content Distribution," Levine's Working Paper Archive 618897000000000636, David K. Levine.
    13. Fan, Gaofeng & Ma, Yuechao, 2023. "Fault-tolerant fixed/preassigned-time synchronization control of uncertain singularly perturbed complex networks with time-varying delay and stochastic disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    14. Joost Berkhout & Bernd F. Heidergott, 2019. "Analysis of Markov Influence Graphs," Operations Research, INFORMS, vol. 67(3), pages 892-904, May.
    15. Shi, Jinyao & Zhou, Peipei & Cai, Shuiming & Jia, Qiang, 2023. "Exponential synchronization for multi-weighted dynamic networks via finite-level quantized control with adaptive scaling gain," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    16. Kondor, Dániel & Mátray, Péter & Csabai, István & Vattay, Gábor, 2013. "Measuring the dimension of partially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4160-4171.
    17. Lazaros K Gallos & Fabricio Q Potiguar & José S Andrade Jr & Hernan A Makse, 2013. "IMDB Network Revisited: Unveiling Fractal and Modular Properties from a Typical Small-World Network," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    18. Khalid Bakhshaliyev & Mehmet Hadi Gunes, 2020. "Generation of 2-mode scale-free graphs for link-level internet topology modeling," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
    19. David Laniado & Yana Volkovich & Salvatore Scellato & Cecilia Mascolo & Andreas Kaltenbrunner, 2018. "The Impact of Geographic Distance on Online Social Interactions," Information Systems Frontiers, Springer, vol. 20(6), pages 1203-1218, December.
    20. Aghabozorgi, Farshad & Khayyambashi, Mohammad Reza, 2018. "A new similarity measure for link prediction based on local structures in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 12-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.