IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v167y2023ics0960077922012310.html
   My bibliography  Save this article

The complex dynamics of correlations within chaotic systems

Author

Listed:
  • Wu, Tao
  • Gao, Xiangyun
  • An, Feng
  • Kurths, Jürgen

Abstract

It is widely reported that the functional connectivity estimated by statistical correlations is often varying within nonlinear systems. Generally, these varying correlations between time series are detected by sliding windows. Still, it is unclear how these correlations evolve within a chaotic system. This work intends to give a quantitative framework to identify the dynamics of correlations within chaotic systems. To this end, we embed the pairwise statistical correlations (from time series within a system) into a correlation-based system by sliding windows. This allows for detecting the dynamics of correlations within a complex system through the embedded correlation-based system. Three chaotic systems (i.e., the Lorenz, the Rossler, and the Chen systems) are employed as benchmark examples. We find that both linear and nonlinear correlations within three chaotic systems show chaotic behaviors on some short window sizes, then transit to non-chaotic states with window size increasing. Moreover, the chaotic dynamics of nonlinear correlations exhibit higher uncertainty than the linear one and the original chaotic systems. The chaotic behaviors of correlations within chaotic systems give another evidence of the difficulty of prediction for chaotic systems. Meanwhile, the identified state transitions (concerning the window size) of correlations may provide a quantitative rule to select an appropriate window size for sliding windows.

Suggested Citation

  • Wu, Tao & Gao, Xiangyun & An, Feng & Kurths, Jürgen, 2023. "The complex dynamics of correlations within chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922012310
    DOI: 10.1016/j.chaos.2022.113052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922012310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.113052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pei Chen & Rui Liu & Kazuyuki Aihara & Luonan Chen, 2020. "Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    2. Wu, Tao & Gao, Xiangyun & An, Sufang & Liu, Siyao, 2021. "Time-varying pattern causality inference in global stock markets," International Review of Financial Analysis, Elsevier, vol. 77(C).
    3. Sun, Yeong-Jeu, 2009. "An exponential observer for the generalized Rossler chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2457-2461.
    4. Morariu, V.V. & Isvoran, Adriana & Zainea, Oana, 2007. "A non-linear approach to the structure–mobility relationship in protein main chains," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1305-1315.
    5. Daniel J. Fenn & Mason A. Porter & Peter J. Mucha & Mark McDonald & Stacy Williams & Neil F. Johnson & Nick S. Jones, 2012. "Dynamical clustering of exchange rates," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1493-1520, October.
    6. Niu, Hongli, 2021. "Correlations between crude oil and stocks prices of renewable energy and technology companies: A multiscale time-dependent analysis," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Tao & An, Feng & Gao, Xiangyun & Wang, Ze, 2023. "Hidden causality between oil prices and exchange rates," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    2. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    3. Mohsin, Muhammad & Jamaani, Fouad, 2023. "Green finance and the socio-politico-economic factors’ impact on the future oil prices: Evidence from machine learning," Resources Policy, Elsevier, vol. 85(PA).
    4. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    5. Bouoiyour, Jamal & Gauthier, Marie & Bouri, Elie, 2023. "Which is leading: Renewable or brown energy assets?," Energy Economics, Elsevier, vol. 117(C).
    6. Zeyi Fu & Hongli Niu & Weiqing Wang, 2023. "Market Efficiency and Cross-Correlations of Chinese New Energy Market with Other Assets: Evidence from Multifractality Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1287-1311, October.
    7. Si, Jingjian & Gao, Xiangyun & Zhou, Jinsheng & Xi, Xian & Sun, Xiaotian & Zhao, Yiran, 2022. "Reconstruction of financial time series data based on compressed sensing," Finance Research Letters, Elsevier, vol. 47(PA).
    8. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," Papers 1504.00590, arXiv.org.
    9. Katerina Rigana & Ernst-Jan Camiel Wit & Samantha Cook, 2021. "Using Network-based Causal Inference to Detect the Sources of Contagion in the Currency Market," Papers 2112.13127, arXiv.org.
    10. Musmeci, Nicoló & Aste, Tomaso & Di Matteo, T., 2015. "Relation between financial market structure and the real economy: comparison between clustering methods," LSE Research Online Documents on Economics 61644, London School of Economics and Political Science, LSE Library.
    11. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    12. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Risk diversification: a study of persistence with a filtered correlation-network approach," Papers 1410.5621, arXiv.org.
    13. Xin Yang & Shigang Wen & Zhifeng Liu & Cai Li & Chuangxia Huang, 2019. "Dynamic Properties of Foreign Exchange Complex Network," Mathematics, MDPI, vol. 7(9), pages 1-19, September.
    14. Farid, Saqib & Karim, Sitara & Naeem, Muhammad A. & Nepal, Rabindra & Jamasb, Tooraj, 2023. "Co-movement between dirty and clean energy: A time-frequency perspective," Energy Economics, Elsevier, vol. 119(C).
    15. Li, Jingpeng & Umar, Muhammad & Huo, Jiale, 2023. "The spillover effect between Chinese crude oil futures market and Chinese green energy stock market," Energy Economics, Elsevier, vol. 119(C).
    16. Nicolo Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," Papers 1406.0496, arXiv.org, revised Jan 2015.
    17. Hajimohammadi, Zeinab & Baharifard, Fatemeh & Ghodsi, Ali & Parand, Kourosh, 2021. "Fractional Chebyshev deep neural network (FCDNN) for solving differential models," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    18. Chen, Yanhua & Li, Youwei & Pantelous, Athanasios A. & Stanley, H. Eugene, 2022. "Short-run disequilibrium adjustment and long-run equilibrium in the international stock markets: A network-based approach," International Review of Financial Analysis, Elsevier, vol. 79(C).
    19. Azam Kheyri & Andriette Bekker & Mohammad Arashi, 2022. "High-Dimensional Precision Matrix Estimation through GSOS with Application in the Foreign Exchange Market," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
    20. Xu, Na & Shang, Pengjian & Kamae, Santi, 2009. "Minimizing the effect of exponential trends in detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 311-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922012310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.