IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v160y2022ics0960077922004829.html
   My bibliography  Save this article

Multidirectional recovery strategy against failure

Author

Listed:
  • Jiang, Yuan
  • Yan, Yuwei
  • Hong, Cheng
  • Yang, Songqing
  • Yu, Rongbin
  • Dai, Jiyang

Abstract

The recovery strategy of complex networks is an important topic in the research of network characteristics. However, previous studies only restore nodes unilaterally and ignore the changes of network topology in the process of recovery and failure. In order to break through the sidedness of the previous researches, this paper proposes a multidirectional recovery strategy. This method takes into account the form of network fragmentation (clustering and isolated failure nodes) and reinforces the topology centered on the hub nodes. The method takes fully account of the cascading failure characteristics of the interdependent network. In addition, several synthetic networks are used to verify the effectiveness of the recovery strategy. We discuss the influence of the parameters a,β on the multidirectional recovery strategy and compare it with the strategy of important nodes and common boundary nodes. The experimental results show the multidirectional recovery strategy can effectively improve the robustness of the network at the appropriate cost. These findings provide an effective reference for the recovery strategy of multi-layer network and are of great significance to the recovery of actual networks.

Suggested Citation

  • Jiang, Yuan & Yan, Yuwei & Hong, Cheng & Yang, Songqing & Yu, Rongbin & Dai, Jiyang, 2022. "Multidirectional recovery strategy against failure," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004829
    DOI: 10.1016/j.chaos.2022.112272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922004829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yan & Cao, Xinxin & Weng, Tongfeng & Yang, Huijie & Gu, Changgui, 2021. "A convex principle of search time for a multi-biased random walk on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    3. Barker, Kash & Ramirez-Marquez, Jose Emmanuel & Rocco, Claudio M., 2013. "Resilience-based network component importance measures," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 89-97.
    4. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Complex interdependent supply chain networks: Cascading failure and robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 58-69.
    5. Huang, Yubo & Dong, Hongli & Zhang, Weidong & Lu, Junguo, 2019. "Stability analysis of nonlinear oscillator networks based on the mechanism of cascading failures," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 5-15.
    6. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    7. Zhang, Guidong & Li, Zhong & Zhang, Bo & Halang, Wolfgang A., 2013. "Understanding the cascading failures in Indian power grids with complex networks theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3273-3280.
    8. Wang, Jianwei, 2013. "Mitigation strategies on scale-free networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2257-2264.
    9. Wang, Zhuoyang & Hill, David J. & Chen, Guo & Dong, Zhao Yang, 2017. "Power system cascading risk assessment based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 532-543.
    10. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Hou, Yueyi & Xing, Xiaoyun & Li, Menghui & Zeng, An & Wang, Yougui, 2017. "Overload cascading failure on complex networks with heterogeneous load redistribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 160-166.
    12. La Rocca, Cristian E. & Stanley, H. Eugene & Braunstein, Lidia A., 2018. "Strategy for stopping failure cascades in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 577-583.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianwei & Cai, Lin & Xu, Bo & Li, Peng & Sun, Enhui & Zhu, Zhiguo, 2016. "Out of control: Fluctuation of cascading dynamics in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1231-1243.
    2. Yang, Qihui & Scoglio, Caterina M. & Gruenbacher, Don M., 2021. "Robustness of supply chain networks against underload cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    3. Jing, Ke & Du, Xinru & Shen, Lixin & Tang, Liang, 2019. "Robustness of complex networks: Cascading failure mechanism by considering the characteristics of time delay and recovery strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Wang, Jianwei & Wang, Siyuan & Wang, Ziwei, 2022. "Robustness of spontaneous cascading dynamics driven by reachable area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    5. Zhu, Qian & Zhu, Zhiliang & Wang, Yifan & Yu, Hai, 2016. "Fuzzy-information-based robustness of interconnected networks against attacks and failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 194-203.
    6. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    7. Aymeric Vié & Alfredo J. Morales, 2021. "How Connected is Too Connected? Impact of Network Topology on Systemic Risk and Collapse of Complex Economic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1327-1351, April.
    8. Tu, Haicheng & Xia, Yongxiang & Wu, Jiajing & Zhou, Xiang, 2019. "Robustness assessment of cyber–physical systems with weak interdependency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 9-17.
    9. Zhang, Tianqiao & Zhang, Yang & Zhu, Xuzhen & Chen, Junliang, 2019. "Cascading failures on interdependent networks with star dependent links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Stippinger, Marcell & Kertész, János, 2014. "Enhancing resilience of interdependent networks by healing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 481-487.
    11. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Wang, Jianwei & Sun, Enhui & Xu, Bo & Li, Peng & Ni, Chengzhang, 2016. "Abnormal cascading failure spreading on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 695-701.
    13. Wang, Jianwei & Li, Yun & Zheng, Qiaofang, 2015. "Cascading load model in interdependent networks with coupled strength," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 242-253.
    14. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    15. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    16. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    17. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    18. Wang, Weihong & Chen, MingMing & Min, Yong & Jin, Xiaogang, 2016. "Structural diversity effects of multilayer networks on the threshold of interacting epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 254-262.
    19. Khakzad, Nima & Reniers, Genserik & Abbassi, Rouzbeh & Khan, Faisal, 2016. "Vulnerability analysis of process plants subject to domino effects," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 127-136.
    20. Rui Peng & Di Wu & Mengyao Sun & Shaomin Wu, 2021. "An attack-defense game on interdependent networks," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2331-2341, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.