IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v508y2018icp577-583.html
   My bibliography  Save this article

Strategy for stopping failure cascades in interdependent networks

Author

Listed:
  • La Rocca, Cristian E.
  • Stanley, H. Eugene
  • Braunstein, Lidia A.

Abstract

Interdependencies are ubiquitous throughout the world. Every real-world system interacts with and is dependent on other systems, and this interdependency affects their performance. In particular, interdependencies among networks make them vulnerable to failure cascades, the effects of which are often catastrophic. Failure propagation fragments network components, disconnects them, and may cause complete systemic failure. We propose a strategy of avoiding or at least mitigating the complete destruction of a system of interdependent networks experiencing a failure cascade. Starting with a fraction 1−p of failing nodes in one network, we reconnect with a probability γ every isolated component to a functional giant component (GC), the largest connected cluster. We find that as γ increases the resilience of the system to cascading failure also increases. We also find that our strategy is more effective when it is applied in a network of low average degree. We solve the problem theoretically using percolation theory, and we find that the solution agrees with simulation results.

Suggested Citation

  • La Rocca, Cristian E. & Stanley, H. Eugene & Braunstein, Lidia A., 2018. "Strategy for stopping failure cascades in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 577-583.
  • Handle: RePEc:eee:phsmap:v:508:y:2018:i:c:p:577-583
    DOI: 10.1016/j.physa.2018.05.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118307155
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.05.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Guizhen & Qi, Xiaogang & Liu, Lifang, 2020. "Research on network robustness based on different deliberate attack methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Tu, Haicheng & Xia, Yongxiang & Wu, Jiajing & Zhou, Xiang, 2019. "Robustness assessment of cyber–physical systems with weak interdependency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 9-17.
    3. Shen, Yi & Ren, Gang & Zhang, Ning & Song, Guohao & Wang, Qin & Ran, Bin, 2020. "Effects of mutual traffic redistribution on robustness of interdependent networks to cascading failures under fluctuant load," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    4. Wang, Jian & Fang, Hongying & Qin, Xiaolin, 2019. "Targeted attack on correlated interdependent networks with dependency groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    5. Zhang, Tianqiao & Zhang, Yang & Zhu, Xuzhen & Chen, Junliang, 2019. "Cascading failures on interdependent networks with star dependent links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    7. Li, Zhenpeng & Tang, Xijin, 2019. "Robustness of complex networks to cascading failures induced by Poisson fluctuating loads," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    8. Deng, Lili & Lin, Ying & Wang, Cheng & Xu, Ronghua & Zhou, Gengui, 2020. "Effects of coupling strength and coupling schemes between interdependent lattices on the evolutionary ultimatum game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Qi, Xiaogang & Yang, Guizhen & Liu, Lifang, 2020. "Robustness analysis of the networks in cascading failures with controllable parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    10. Jiang, Yuan & Yan, Yuwei & Hong, Cheng & Yang, Songqing & Yu, Rongbin & Dai, Jiyang, 2022. "Multidirectional recovery strategy against failure," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Yang, Qihui & Scoglio, Caterina M. & Gruenbacher, Don M., 2021. "Robustness of supply chain networks against underload cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:508:y:2018:i:c:p:577-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.