IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v534y2019ics0378437119311835.html
   My bibliography  Save this article

Robustness of complex networks: Cascading failure mechanism by considering the characteristics of time delay and recovery strategy

Author

Listed:
  • Jing, Ke
  • Du, Xinru
  • Shen, Lixin
  • Tang, Liang

Abstract

To study the robustness of complex networks while encountering random failures or deliberate attacks, the cascading failure model is constructed by considering failure propagation with probability, which can depict the dynamic failure process. In particular, the characteristics of time delay and repetitive failure are taken into account in our model, and the network comprehensive robustness index (RI) is further designed according to valid survival edges and nodes. Additionally, the probability recovery strategy is proposed as well, and it is implemented in four typical networks, including the BA network, WS network, NC network and ER network. Different parameters in our model, including α, f, R, and β, are applied in simulation experiments to reveal their effects on RI in the cascading failure process. The simulation results show that nodes’ recovery abilities increase with R, which reduce the impacts of cascading failures and produce good network robustness. Meanwhile, the time delay increases with parameter α, and the size of the cascading failure decreases accordingly, which indicates that the larger that the time delay is, the stronger the RI. Additionally, the speed of the cascading failure process and the size of the cascading failure both present an increasing trend when parameter f increases gradually in the cascading failure. This indicates that the failure probability apparently impacts the RI. We also analyze the turning point t for RI(t) during the cascading failure process.

Suggested Citation

  • Jing, Ke & Du, Xinru & Shen, Lixin & Tang, Liang, 2019. "Robustness of complex networks: Cascading failure mechanism by considering the characteristics of time delay and recovery strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  • Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119311835
    DOI: 10.1016/j.physa.2019.122061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119311835
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dou, Bing-Lin & Wang, Xue-Guang & Zhang, Shi-Yong, 2010. "Robustness of networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2310-2317.
    2. J. Wang & Y.-H. Liu & Y. Jiao & H.-Y. Hu, 2009. "Cascading dynamics in congested complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(1), pages 95-100, January.
    3. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Complex interdependent supply chain networks: Cascading failure and robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 58-69.
    4. Duan, Dong-Li & Ling, Xiao-Dong & Wu, Xiao-Yue & OuYang, Di-Hua & Zhong, Bin, 2014. "Critical thresholds for scale-free networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 252-258.
    5. Zhang, Guidong & Li, Zhong & Zhang, Bo & Halang, Wolfgang A., 2013. "Understanding the cascading failures in Indian power grids with complex networks theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3273-3280.
    6. Wang, Zhuoyang & Hill, David J. & Chen, Guo & Dong, Zhao Yang, 2017. "Power system cascading risk assessment based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 532-543.
    7. Chen, Shi-Ming & Xu, Yun-Fei & Nie, Sen, 2017. "Robustness of network controllability in cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 536-539.
    8. Hou, Yueyi & Xing, Xiaoyun & Li, Menghui & Zeng, An & Wang, Yougui, 2017. "Overload cascading failure on complex networks with heterogeneous load redistribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 160-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neha Jain & Ashish Payal & Aarti Jain, 2023. "Analysis of link failures and recoveries on 6to4 tunneling network with different routing protocol," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1037-1063, March.
    2. Jin, Ziyang & Duan, Dongli & Wang, Ning, 2022. "Cascading failure of complex networks based on load redistribution and epidemic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    3. Wu, Yipeng & Chen, Zhilong & Zhao, Xudong & Gong, Huadong & Su, Xiaochao & Chen, Yicun, 2021. "Propagation model of cascading failure based on discrete dynamical system," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    4. Wang, Jianwei & Wang, Siyuan & Wang, Ziwei, 2022. "Robustness of spontaneous cascading dynamics driven by reachable area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    5. Jin, Kun & Wang, Wei & Li, Xinran & Chen, Siyuan & Qin, Shaoyang & Hua, Xuedong, 2023. "Cascading failure in urban rail transit network considering demand variation and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    6. Dui, Hongyan & Meng, Xueyu & Xiao, Hui & Guo, Jianjun, 2020. "Analysis of the cascading failure for scale-free networks based on a multi-strategy evolutionary game," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    7. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Sun, Hao & Xu, Pengpeng, 2021. "Using the disaster spreading theory to analyze the cascading failure of urban rail transit network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. He, Xiang & Yuan, Yongbo, 2022. "Revisiting driving factor influences on uncertain cascading disaster evolutions: From perspective of global sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    9. Wu, Yipeng & Chen, Zhilong & Zhao, Xudong & Liu, Ying & Zhang, Ping & Liu, Yajiao, 2021. "Robust analysis of cascading failures in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Yuan & Yan, Yuwei & Hong, Cheng & Yang, Songqing & Yu, Rongbin & Dai, Jiyang, 2022. "Multidirectional recovery strategy against failure," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Yang, Qihui & Scoglio, Caterina M. & Gruenbacher, Don M., 2021. "Robustness of supply chain networks against underload cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    3. Jin, Kun & Wang, Wei & Li, Xinran & Chen, Siyuan & Qin, Shaoyang & Hua, Xuedong, 2023. "Cascading failure in urban rail transit network considering demand variation and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Wang, Jianwei & Wang, Siyuan & Wang, Ziwei, 2022. "Robustness of spontaneous cascading dynamics driven by reachable area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    5. Zhu, Qian & Zhu, Zhiliang & Qi, Yi & Yu, Hai & Xu, Yanjie, 2018. "Optimization of cascading failure on complex network based on NNIA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 42-51.
    6. Ren, Hai-Peng & Song, Jihong & Yang, Rong & Baptista, Murilo S. & Grebogi, Celso, 2016. "Cascade failure analysis of power grid using new load distribution law and node removal rule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 239-251.
    7. Shi, Xiaoqiu & Long, Wei & Li, Yanyan & Deng, Dingshan, 2022. "Robustness of interdependent supply chain networks against both functional and structural cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    8. Li, Zhuyue & Zhao, Peixin & Han, Xue, 2022. "Agri-food supply chain network disruption propagation and recovery based on cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    9. Zhu, Qian & Nie, Jianlong & Zhu, Zhiliang & Yu, Hai & Xue, Yang, 2018. "Modeling and analyzing cascading dynamics of the Internet based on local congestion information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 298-309.
    10. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    11. Beyza, Jesus & Ruiz-Paredes, Hector F. & Garcia-Paricio, Eduardo & Yusta, Jose M., 2020. "Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    12. X. Zhang & L. D. Valdez & H. E. Stanley & L. A. Braunstein, 2019. "Modeling Risk Contagion in the Venture Capital Market: A Multilayer Network Approach," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    13. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    14. Gaogeng Zhu & Guoming Chen & Jingyu Zhu & Xiangkun Meng & Xinhong Li, 2022. "Modeling the Evolution of Major Storm-Disaster-Induced Accidents in the Offshore Oil and Gas Industry," IJERPH, MDPI, vol. 19(12), pages 1-27, June.
    15. Jinghan He & Ninghui Han & Ziqi Wang, 2021. "Optimization Method for Multiple Measures to Mitigate Line Overloads in Power Systems," Energies, MDPI, vol. 14(19), pages 1-19, September.
    16. Yi, Chengqi & Bao, Yuanyuan & Jiang, Jingchi & Xue, Yibo, 2015. "Modeling cascading failures with the crisis of trust in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 256-271.
    17. Yuhao Wang & Jiaxian Shen & Jinnan Pan & Tingqiang Chen, 2022. "A Credit Risk Contagion Intensity Model of Supply Chain Enterprises under Different Credit Modes," Sustainability, MDPI, vol. 14(20), pages 1-26, October.
    18. Xia, Yongxiang & Wang, Cong & Shen, Hui-Liang & Song, Hainan, 2020. "Cascading failures in spatial complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    19. Fang, Yinhai & Xu, Haiyan & Perc, Matjaž & Tan, Qingmei, 2019. "Dynamic evolution of economic networks under the influence of mergers and divestitures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 89-99.
    20. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119311835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.