IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920303726.html
   My bibliography  Save this article

Travel time analysis in the Chinese coupled aviation and high-speed rail network

Author

Listed:
  • Wang, Yiqiao
  • Lu, Qiaoyi
  • Cao, Xianbin
  • Zhou, Xuesong
  • Latora, Vito
  • Tong, Lu Carol
  • Du, Wenbo

Abstract

Thanks to the rapid expansion of the Chinese Aviation (A) network and of the High-Speed Rail (HSR) network, intermodal travel across air transport and the high-speed rail network has become a fully integrated process for many inter-city travelers. By constructing the spatially-embedded Coupled Aviation and High-Speed Rail (CAHSR) network, whose two layers respectively represent the aviation and the HSR network, while the coupling describes ground transfer between different facilities (airports and/or rail stations) in the same city, we focus on a systematic travel time analysis for major mega-regions. Our empirical analysis calculates passengers’ end-to-end travel time between major mega-regions, including real information on waiting and transfer time. The results indicate that sufficient frequencies of flights/HSR trains have led to high multi-modal accessibility across different time periods of the day. In addition, we also find that highly intermodal air-HSR mobility pathways can be extremely important to link small cities to urban mega-region hubs. Our findings may assist timetable improvement in future infrastructure planning for the CAHSR network.

Suggested Citation

  • Wang, Yiqiao & Lu, Qiaoyi & Cao, Xianbin & Zhou, Xuesong & Latora, Vito & Tong, Lu Carol & Du, Wenbo, 2020. "Travel time analysis in the Chinese coupled aviation and high-speed rail network," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920303726
    DOI: 10.1016/j.chaos.2020.109973
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920303726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109973?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Changmin & Zhang, Anming, 2014. "Effects of high-speed rail and airline cooperation under hub airport capacity constraint," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 33-49.
    2. Yang, Haoran & Dobruszkes, Frédéric & Wang, Jiaoe & Dijst, Martin & Witte, Patrick, 2018. "Comparing China's urban systems in high-speed railway and airline networks," Journal of Transport Geography, Elsevier, vol. 68(C), pages 233-244.
    3. Bergantino, Angela S. & Capozza, Claudia & Capurso, Mauro, 2015. "The impact of open access on intra- and inter-modal rail competition. A national level analysis in Italy," Transport Policy, Elsevier, vol. 39(C), pages 77-86.
    4. Du, Wen-Bo & Zhou, Xing-Lian & Lordan, Oriol & Wang, Zhen & Zhao, Chen & Zhu, Yan-Bo, 2016. "Analysis of the Chinese Airline Network as multi-layer networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 108-116.
    5. Albalate, Daniel & Bel, Germà & Fageda, Xavier, 2015. "Competition and cooperation between high-speed rail and air transportation services in Europe," Journal of Transport Geography, Elsevier, vol. 42(C), pages 166-174.
    6. Haoran Yang & Frédéric Dobruszkes & Jiaoe Wang & Martin Dijst & Patrick Wiik, 2018. "Comparing China's urban systems in high-speed railway and airline networks," ULB Institutional Repository 2013/269363, ULB -- Universite Libre de Bruxelles.
    7. Xia, Wenyi & Zhang, Anming, 2016. "High-speed rail and air transport competition and cooperation: A vertical differentiation approach," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 456-481.
    8. Hong, Chen & Zhang, Jun & Cao, Xian-Bin & Du, Wen-Bo, 2016. "Structural properties of the Chinese air transportation multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 28-34.
    9. Zhu, Zhenran & Zhang, Anming & Zhang, Yahua, 2018. "Connectivity of intercity passenger transportation in China: A multi-modal and network approach," Journal of Transport Geography, Elsevier, vol. 71(C), pages 263-276.
    10. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    11. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    12. Bergantino, Angela S. & Capozza, Claudia & Capurso, Mauro, 2015. "The impact of open access on intra- and inter-modal rail competition. A national level analysis in Italy," Transport Policy, Elsevier, vol. 39(C), pages 77-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, YanLi & Chen, ShiMing & Zhou, Jie & Stanley, H.E. & Gao, Jianxi, 2021. "Percolation of edge-coupled interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    2. Yin, Dezhi & Huang, Wencheng & Shuai, Bin & Liu, Hongyi & Zhang, Yue, 2022. "Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Su & Weixin Luan & Zeyang Li & Shulin Wan & Zhenchao Zhang, 2019. "Evolution and Determinants of an Air Transport Network: A Case Study of the Chinese Main Air Transport Network," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    2. Zhang, Rui & Johnson, Daniel & Zhao, Weiming & Nash, Chris, 2019. "Competition of airline and high-speed rail in terms of price and frequency: Empirical study from China," Transport Policy, Elsevier, vol. 78(C), pages 8-18.
    3. Bergantino, Angela Stefania & Madio, Leonardo, 2020. "Intermodal competition and substitution. HSR versus air transport: Understanding the socio-economic determinants of modal choice," Research in Transportation Economics, Elsevier, vol. 79(C).
    4. Wang, Kun & Xia, Wenyi & Zhang, Anming, 2017. "Should China further expand its high-speed rail network? Consider the low-cost carrier factor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 105-120.
    5. Álvarez-SanJaime, Óscar & Cantos-Sanchez, Pedro & Moner-Colonques, Rafael & Sempere-Monerris, Jose J., 2020. "Pricing and infrastructure fees in shaping cooperation in a model of high-speed rail and airline competition," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 22-41.
    6. Xia, Wenyi & Zhang, Anming, 2016. "High-speed rail and air transport competition and cooperation: A vertical differentiation approach," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 456-481.
    7. Huang, Yan & Zong, Huiming, 2022. "The intercity railway connections in China: A comparative analysis of high-speed train and conventional train services," Transport Policy, Elsevier, vol. 120(C), pages 89-103.
    8. Wang, Wei & Cai, Kaiquan & Du, Wenbo & Wu, Xin & Tong, Lu (Carol) & Zhu, Xi & Cao, Xianbin, 2020. "Analysis of the Chinese railway system as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    9. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    10. Li, Hongchang & Yu, Kemei & Wang, Kun & Zhang, Anming, 2019. "Market power and its determinants in the Chinese railway industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 261-276.
    11. Xia, Wenyi & Jiang, Changmin & Wang, Kun & Zhang, Anming, 2019. "Air-rail revenue sharing in a multi-airport system: Effects on traffic and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 304-319.
    12. Bernardo, Valeria & Fageda, Xavier, 2020. "Impacts of competition on connecting travelers: Evidence from the transatlantic aviation market," Transport Policy, Elsevier, vol. 96(C), pages 141-151.
    13. Jiang, Changmin & Wang, Kun & Wang, Qiang & Yang, Hangjun, 2022. "The Impact of High-Speed Rail Competition on Airline On-Time Performance," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 109-127.
    14. Capozza, Claudia, 2016. "The effect of rail travel time on airline fares: First evidence from the Italian passenger market," Economics of Transportation, Elsevier, vol. 6(C), pages 18-24.
    15. Chen, Zhe & Wang, Zhengli & Jiang, Hai, 2019. "Analyzing the heterogeneous impacts of high-speed rail entry on air travel in China: A hierarchical panel regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 86-98.
    16. Borsati, Mattia & Albalate, Daniel, 2020. "On the modal shift from motorway to high-speed rail: evidence from Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 145-164.
    17. Zhu, Feng & Wu, Xu & Cao, Chengxuan, 2021. "High-speed rail and air transport competition under high flight delay conditions in China: A case study of the Beijing-Shanghai corridor," Utilities Policy, Elsevier, vol. 71(C).
    18. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    19. Jiaoe Wang & Haoran Yang & Han Wang, 2019. "The Evolution of China’s International Aviation Markets from a Policy Perspective on Air Passenger Flows," Sustainability, MDPI, vol. 11(13), pages 1-15, June.
    20. Su, Min & Luan, Weixin & Fu, Xiaowen & Yang, Zaili & Zhang, Rui, 2020. "The competition effects of low-cost carriers and high-speed rail on the Chinese aviation market," Transport Policy, Elsevier, vol. 95(C), pages 37-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920303726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.