IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v98y2012icp556-561.html
   My bibliography  Save this article

A pre-industrial magnetic cooling system for room temperature application

Author

Listed:
  • Balli, M.
  • Sari, O.
  • Mahmed, C.
  • Besson, Ch.
  • Bonhote, Ph.
  • Duc, D.
  • Forchelet, J.

Abstract

In this paper, a new type of reciprocating magnetic refrigerator working with high remanence permanent magnets as the source of the magnetic field is presented. The simulated and measured magnetic field at the machine air gap is about 1.45T. Initially, gadolinium metal (Gd) was used as the magnetocaloric refrigerant. Its magnetocaloric performances and its quality were checked experimentally in a developed test bench. To attain high values of temperature difference between the hot and the cold sources (temperature span), a new design of the Active Magnetic Refrigeration (AMR) cycle was implemented. However, in order to reduce the energy consumption and then increase the thermodynamic performances of the magnetic system, a special configuration of the magnetocaloric materials is developed. The numerical results of the applied magnetic forces on the new configuration are given and analysed. The developed machine is designed to produce a cooling power between 80 and 100W with a temperature span larger than 20K. The obtained results demonstrate that magnetic cooling is a promising alternative to replace traditional systems.

Suggested Citation

  • Balli, M. & Sari, O. & Mahmed, C. & Besson, Ch. & Bonhote, Ph. & Duc, D. & Forchelet, J., 2012. "A pre-industrial magnetic cooling system for room temperature application," Applied Energy, Elsevier, vol. 98(C), pages 556-561.
  • Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:556-561
    DOI: 10.1016/j.apenergy.2012.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912003200
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Tegus & E. Brück & K. H. J. Buschow & F. R. de Boer, 2002. "Transition-metal-based magnetic refrigerants for room-temperature applications," Nature, Nature, vol. 415(6868), pages 150-152, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamdani, Khathir & Smaili, Arezki & Sari, Osmann, 2020. "Numerical simulation of hydrogen active magnetic regenerative liquefier," Renewable Energy, Elsevier, vol. 158(C), pages 487-499.
    2. Ali Alahmer & Malik Al-Amayreh & Ahmad O. Mostafa & Mohammad Al-Dabbas & Hegazy Rezk, 2021. "Magnetic Refrigeration Design Technologies: State of the Art and General Perspectives," Energies, MDPI, vol. 14(15), pages 1-26, July.
    3. Scarpa, Federico & Tagliafico, Giulio & Tagliafico, Luca A., 2015. "A classification methodology applied to existing room temperature magnetic refrigerators up to the year 2014," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 497-503.
    4. Romero Gómez, J. & Ferreiro Garcia, R. & Carbia Carril, J. & Romero Gómez, M., 2013. "A review of room temperature linear reciprocating magnetic refrigerators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 1-12.
    5. Chdil, O. & Bikerouin, M. & Balli, M. & Mounkachi, O., 2023. "New horizons in magnetic refrigeration using artificial intelligence," Applied Energy, Elsevier, vol. 335(C).
    6. Qian, Suxin & Yuan, Lifen & Yu, Jianlin & Yan, Gang, 2017. "Numerical modeling of an active elastocaloric regenerator refrigerator with phase transformation kinetics and the matching principle for materials selection," Energy, Elsevier, vol. 141(C), pages 744-756.
    7. Lozano, J.A. & Engelbrecht, K. & Bahl, C.R.H. & Nielsen, K.K. & Eriksen, D. & Olsen, U.L. & Barbosa, J.R. & Smith, A. & Prata, A.T. & Pryds, N., 2013. "Performance analysis of a rotary active magnetic refrigerator," Applied Energy, Elsevier, vol. 111(C), pages 669-680.
    8. Ismail, A. & Perrin, M. & Giurgea, S. & Bailly, Y. & Roy, J.C. & Barriere, T., 2022. "Multiphysical and multidimensional modelling of Parallel-Plate active magnetic regenerator," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Hong Gao & Dong-Hui Wang & Feng-Xia Hu & Qing-Zhen Huang & You-Ting Song & Shuai-Kang Yuan & Zheng-Ying Tian & Bing-Jie Wang & Zi-Bing Yu & Hou-Bo Zhou & Yue Kan & Yuan Lin & Jing Wang & Yun-liang , 2024. "Low pressure reversibly driving colossal barocaloric effect in two-dimensional vdW alkylammonium halides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Xin Tang & H. Sepehri-Amin & N. Terada & A. Martin-Cid & I. Kurniawan & S. Kobayashi & Y. Kotani & H. Takeya & J. Lai & Y. Matsushita & T. Ohkubo & Y. Miura & T. Nakamura & K. Hono, 2022. "Magnetic refrigeration material operating at a full temperature range required for hydrogen liquefaction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Chen, Haodong & Ma, Zhihui & Liu, Xianliang & Qiao, Kaiming & Xie, Longlong & Li, Zhenxing & Shen, Jun & Dai, Wei & Ou, Zhiqiang & Yibole, Hargen & Tegus, Ojiyed & Taskaev, Sergey V. & Chu, Ke & Long,, 2022. "Evaluation of thermomagnetic generation performance of classic magnetocaloric materials for harvesting low-grade waste heat," Applied Energy, Elsevier, vol. 306(PA).
    4. Xia, Zhengrong & Zhang, Yue & Chen, Jincan & Lin, Guoxing, 2008. "Performance analysis and parametric optimal criteria of an irreversible magnetic Brayton-refrigerator," Applied Energy, Elsevier, vol. 85(2-3), pages 159-170, February.
    5. Shin-ichi Ohkoshi & Kosuke Nakagawa & Marie Yoshikiyo & Asuka Namai & Kenta Imoto & Yugo Nagane & Fangda Jia & Olaf Stefanczyk & Hiroko Tokoro & Junhao Wang & Takeshi Sugahara & Kouji Chiba & Kazuhiko, 2023. "Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:98:y:2012:i:c:p:556-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.