IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46248-1.html
   My bibliography  Save this article

Low pressure reversibly driving colossal barocaloric effect in two-dimensional vdW alkylammonium halides

Author

Listed:
  • Yi-Hong Gao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Dong-Hui Wang

    (Beijing Normal University)

  • Feng-Xia Hu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Qing-Zhen Huang

    (Chinese Academy of Sciences
    Spallation Neutron Source Science Center)

  • You-Ting Song

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shuai-Kang Yuan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zheng-Ying Tian

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Bing-Jie Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zi-Bing Yu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Hou-Bo Zhou

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yue Kan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuan Lin

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jing Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yun-liang Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Ying Liu

    (Beijing Normal University)

  • Yun-Zhong Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ji-Rong Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Tong-Yun Zhao

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Bao-Gen Shen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

Plastic crystals as barocaloric materials exhibit the large entropy change rivalling freon, however, the limited pressure-sensitivity and large hysteresis of phase transition hinder the colossal barocaloric effect accomplished reversibly at low pressure. Here we report reversible colossal barocaloric effect at low pressure in two-dimensional van-der-Waals alkylammonium halides. Via introducing long carbon chains in ammonium halide plastic crystals, two-dimensional structure forms in (CH3–(CH2)n-1)2NH2X (X: halogen element) with weak interlayer van-der-Waals force, which dictates interlayer expansion as large as 13% and consequently volume change as much as 12% during phase transition. Such anisotropic expansion provides sufficient space for carbon chains to undergo dramatic conformation disordering, which induces colossal entropy change with large pressure-sensitivity and small hysteresis. The record reversible colossal barocaloric effect with entropy change ΔSr ~ 400 J kg−1 K−1 at 0.08 GPa and adiabatic temperature change ΔTr ~ 11 K at 0.1 GPa highlights the design of novel barocaloric materials by engineering the dimensionality of plastic crystals.

Suggested Citation

  • Yi-Hong Gao & Dong-Hui Wang & Feng-Xia Hu & Qing-Zhen Huang & You-Ting Song & Shuai-Kang Yuan & Zheng-Ying Tian & Bing-Jie Wang & Zi-Bing Yu & Hou-Bo Zhou & Yue Kan & Yuan Lin & Jing Wang & Yun-liang , 2024. "Low pressure reversibly driving colossal barocaloric effect in two-dimensional vdW alkylammonium halides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46248-1
    DOI: 10.1038/s41467-024-46248-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46248-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46248-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y. G. Liang & S. Lee & H. S. Yu & H. R. Zhang & Y. J. Liang & P. Y. Zavalij & X. Chen & R. D. James & L. A. Bendersky & A. V. Davydov & X. H. Zhang & I. Takeuchi, 2020. "Tuning the hysteresis of a metal-insulator transition via lattice compatibility," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Jianchao Lin & Peng Tong & Kai Zhang & Kun Tao & Wenjian Lu & Xianlong Wang & Xuekai Zhang & Wenhai Song & Yuping Sun, 2022. "Colossal and reversible barocaloric effect in liquid-solid-transition materials n-alkanes," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. P. Lloveras & A. Aznar & M. Barrio & Ph. Negrier & C. Popescu & A. Planes & L. Mañosa & E. Stern-Taulats & A. Avramenko & N. D. Mathur & X. Moya & J.-Ll. Tamarit, 2019. "Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    4. Bing Li & Yukinobu Kawakita & Seiko Ohira-Kawamura & Takeshi Sugahara & Hui Wang & Jingfan Wang & Yanna Chen & Saori I. Kawaguchi & Shogo Kawaguchi & Koji Ohara & Kuo Li & Dehong Yu & Richard Mole & T, 2019. "Colossal barocaloric effects in plastic crystals," Nature, Nature, vol. 567(7749), pages 506-510, March.
    5. O. Tegus & E. Brück & K. H. J. Buschow & F. R. de Boer, 2002. "Transition-metal-based magnetic refrigerants for room-temperature applications," Nature, Nature, vol. 415(6868), pages 150-152, January.
    6. Araceli Aznar & Pol Lloveras & Michela Romanini & María Barrio & Josep-Lluís Tamarit & Claudio Cazorla & Daniel Errandonea & Neil D. Mathur & Antoni Planes & Xavier Moya & Lluís Mañosa, 2017. "Giant barocaloric effects over a wide temperature range in superionic conductor AgI," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    7. F. B. Li & M. Li & X. Xu & Z. C. Yang & H. Xu & C. K. Jia & K. Li & J. He & B. Li & Hui Wang, 2020. "Understanding colossal barocaloric effects in plastic crystals," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    8. Jia Yan Law & Victorino Franco & Luis Miguel Moreno-Ramírez & Alejandro Conde & Dmitriy Y. Karpenkov & Iliya Radulov & Konstantin P. Skokov & Oliver Gutfleisch, 2018. "A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin-ichi Ohkoshi & Kosuke Nakagawa & Marie Yoshikiyo & Asuka Namai & Kenta Imoto & Yugo Nagane & Fangda Jia & Olaf Stefanczyk & Hiroko Tokoro & Junhao Wang & Takeshi Sugahara & Kouji Chiba & Kazuhiko, 2023. "Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jinyoung Seo & Ryan D. McGillicuddy & Adam H. Slavney & Selena Zhang & Rahil Ukani & Andrey A. Yakovenko & Shao-Liang Zheng & Jarad A. Mason, 2022. "Colossal barocaloric effects with ultralow hysteresis in two-dimensional metal–halide perovskites," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Qingyong Ren & Ji Qi & Dehong Yu & Zhe Zhang & Ruiqi Song & Wenli Song & Bao Yuan & Tianhao Wang & Weijun Ren & Zhidong Zhang & Xin Tong & Bing Li, 2022. "Ultrasensitive barocaloric material for room-temperature solid-state refrigeration," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021. "A literature review of the economics of COVID‐19," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.
    5. Yuanjia Zhang & Xueru Chen & Leilei Cheng & Jing Gu & Yulin Xu, 2023. "Conversion of Polyethylene to High-Yield Fuel Oil at Low Temperatures and Atmospheric Initial Pressure," IJERPH, MDPI, vol. 20(5), pages 1-14, February.
    6. Shixian Zhang & Quanling Yang & Chenjian Li & Yuheng Fu & Huaqing Zhang & Zhiwei Ye & Xingnan Zhou & Qi Li & Tao Wang & Shan Wang & Wenqing Zhang & Chuanxi Xiong & Qing Wang, 2022. "Solid-state cooling by elastocaloric polymer with uniform chain-lengths," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Balli, M. & Sari, O. & Mahmed, C. & Besson, Ch. & Bonhote, Ph. & Duc, D. & Forchelet, J., 2012. "A pre-industrial magnetic cooling system for room temperature application," Applied Energy, Elsevier, vol. 98(C), pages 556-561.
    8. Xin Tang & H. Sepehri-Amin & N. Terada & A. Martin-Cid & I. Kurniawan & S. Kobayashi & Y. Kotani & H. Takeya & J. Lai & Y. Matsushita & T. Ohkubo & Y. Miura & T. Nakamura & K. Hono, 2022. "Magnetic refrigeration material operating at a full temperature range required for hydrogen liquefaction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    10. Deepak, K. & Varma, V.B. & Prasanna, G. & Ramanujan, R.V., 2019. "Hybrid thermomagnetic oscillator for cooling and direct waste heat conversion to electricity," Applied Energy, Elsevier, vol. 233, pages 312-320.
    11. Chen, Haodong & Ma, Zhihui & Liu, Xianliang & Qiao, Kaiming & Xie, Longlong & Li, Zhenxing & Shen, Jun & Dai, Wei & Ou, Zhiqiang & Yibole, Hargen & Tegus, Ojiyed & Taskaev, Sergey V. & Chu, Ke & Long,, 2022. "Evaluation of thermomagnetic generation performance of classic magnetocaloric materials for harvesting low-grade waste heat," Applied Energy, Elsevier, vol. 306(PA).
    12. Qiang Li & Luqi Wei & Ni Zhong & Xiaoming Shi & Donglin Han & Shanyu Zheng & Feihong Du & Junye Shi & Jiangping Chen & Houbing Huang & Chungang Duan & Xiaoshi Qian, 2024. "Low-k nano-dielectrics facilitate electric-field induced phase transition in high-k ferroelectric polymers for sustainable electrocaloric refrigeration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Xia, Zhengrong & Zhang, Yue & Chen, Jincan & Lin, Guoxing, 2008. "Performance analysis and parametric optimal criteria of an irreversible magnetic Brayton-refrigerator," Applied Energy, Elsevier, vol. 85(2-3), pages 159-170, February.
    14. Adriaan van den Bruinhorst & Jocasta Avila & Martin Rosenthal & Ange Pellegrino & Manfred Burghammer & Margarida Costa Gomes, 2023. "Defying decomposition: the curious case of choline chloride," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Prakash, Navendu & Srivastava, Bhavya & Singh, Shveta & Sharma, Seema & Jain, Sonali, 2022. "Effectiveness of social distancing interventions in containing COVID-19 incidence: International evidence using Kalman filter," Economics & Human Biology, Elsevier, vol. 44(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46248-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.