IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v85y2008i2-3p159-170.html
   My bibliography  Save this article

Performance analysis and parametric optimal criteria of an irreversible magnetic Brayton-refrigerator

Author

Listed:
  • Xia, Zhengrong
  • Zhang, Yue
  • Chen, Jincan
  • Lin, Guoxing

Abstract

An irreversible magnetic Brayton refrigeration-cycle model is established, in which the thermal resistance and irreversibility in the two adiabatic processes are taken into account. Based on the model, the performance characteristics of the magnetic Brayton refrigeration-cycle are investigated and the effects of the irreversibilities and the ratio of the magnetic fields in the two iso-field processes on the performance of the refrigeration cycle are revealed. On the basis of the thermodynamic properties of a paramagnetic material, by using the optimal control-theory, the mathematical expressions for the cooling load and the coefficient of performance are derived and some important performance parameters, e.g., the temperatures of the working substance at several important state-points, are optimized. By means of numerical predictions, the optimal performance characteristic curves of the magnetic Brayton refrigeration-cycle are obtained and analyzed. Furthermore, some optimal operating-regions including those for the cooling load, coefficient of performance and the temperatures of the cyclic working substance at the two important state-points are determined and evaluated. Finally, several special cases are discussed in detail.

Suggested Citation

  • Xia, Zhengrong & Zhang, Yue & Chen, Jincan & Lin, Guoxing, 2008. "Performance analysis and parametric optimal criteria of an irreversible magnetic Brayton-refrigerator," Applied Energy, Elsevier, vol. 85(2-3), pages 159-170, February.
  • Handle: RePEc:eee:appene:v:85:y:2008:i:2-3:p:159-170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(07)00080-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Tegus & E. Brück & K. H. J. Buschow & F. R. de Boer, 2002. "Transition-metal-based magnetic refrigerants for room-temperature applications," Nature, Nature, vol. 415(6868), pages 150-152, January.
    2. Wang, Wenhua & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Power optimization of an endoreversible closed intercooled regenerated Brayton-cycle coupled to variable-temperature heat-reservoirs," Applied Energy, Elsevier, vol. 82(2), pages 181-195, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Alahmer & Malik Al-Amayreh & Ahmad O. Mostafa & Mohammad Al-Dabbas & Hegazy Rezk, 2021. "Magnetic Refrigeration Design Technologies: State of the Art and General Perspectives," Energies, MDPI, vol. 14(15), pages 1-26, July.
    2. Aprea, Ciro & Maiorino, Angelo, 2010. "A flexible numerical model to study an active magnetic refrigerator for near room temperature applications," Applied Energy, Elsevier, vol. 87(8), pages 2690-2698, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damiani, Lorenzo & Prato, Alessandro Pini & Revetria, Roberto, 2014. "Innovative steam generation system for the secondary loop of “ALFRED” lead-cooled fast reactor demonstrator," Applied Energy, Elsevier, vol. 121(C), pages 207-218.
    2. Yi-Hong Gao & Dong-Hui Wang & Feng-Xia Hu & Qing-Zhen Huang & You-Ting Song & Shuai-Kang Yuan & Zheng-Ying Tian & Bing-Jie Wang & Zi-Bing Yu & Hou-Bo Zhou & Yue Kan & Yuan Lin & Jing Wang & Yun-liang , 2024. "Low pressure reversibly driving colossal barocaloric effect in two-dimensional vdW alkylammonium halides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Balli, M. & Sari, O. & Mahmed, C. & Besson, Ch. & Bonhote, Ph. & Duc, D. & Forchelet, J., 2012. "A pre-industrial magnetic cooling system for room temperature application," Applied Energy, Elsevier, vol. 98(C), pages 556-561.
    4. Xin Tang & H. Sepehri-Amin & N. Terada & A. Martin-Cid & I. Kurniawan & S. Kobayashi & Y. Kotani & H. Takeya & J. Lai & Y. Matsushita & T. Ohkubo & Y. Miura & T. Nakamura & K. Hono, 2022. "Magnetic refrigeration material operating at a full temperature range required for hydrogen liquefaction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Sanjay, & Prasad, Bishwa N., 2013. "Energy and exergy analysis of intercooled combustion-turbine based combined cycle power plant," Energy, Elsevier, vol. 59(C), pages 277-284.
    6. Ust, Yasin & Sahin, Bahri & Kodal, Ali & Akcay, Ismail Hakki, 2006. "Ecological coefficient of performance analysis and optimization of an irreversible regenerative-Brayton heat engine," Applied Energy, Elsevier, vol. 83(6), pages 558-572, June.
    7. Chen, Haodong & Ma, Zhihui & Liu, Xianliang & Qiao, Kaiming & Xie, Longlong & Li, Zhenxing & Shen, Jun & Dai, Wei & Ou, Zhiqiang & Yibole, Hargen & Tegus, Ojiyed & Taskaev, Sergey V. & Chu, Ke & Long,, 2022. "Evaluation of thermomagnetic generation performance of classic magnetocaloric materials for harvesting low-grade waste heat," Applied Energy, Elsevier, vol. 306(PA).
    8. Choudhary, Tushar & Sanjay,, 2017. "Thermodynamic assessment of SOFC-ICGT hybrid cycle: Energy analysis and entropy generation minimization," Energy, Elsevier, vol. 134(C), pages 1013-1028.
    9. Goodarzi, Mohsen & Kiasat, Mohsen & Khalilidehkordi, Ehsan, 2014. "Performance analysis of a modified regenerative Brayton and inverse Brayton cycle," Energy, Elsevier, vol. 72(C), pages 35-43.
    10. Shin-ichi Ohkoshi & Kosuke Nakagawa & Marie Yoshikiyo & Asuka Namai & Kenta Imoto & Yugo Nagane & Fangda Jia & Olaf Stefanczyk & Hiroko Tokoro & Junhao Wang & Takeshi Sugahara & Kouji Chiba & Kazuhiko, 2023. "Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:85:y:2008:i:2-3:p:159-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.