Multi-objective optimization of coal-fired electricity production with CO2 capture
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2012.03.036
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
- Zhu, Lei & Fan, Ying, 2011. "A real options–based CCS investment evaluation model: Case study of China’s power generation sector," Applied Energy, Elsevier, vol. 88(12), pages 4320-4333.
- Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
- Hu, Yukun & Yan, Jinyue, 2012. "Characterization of flue gas in oxy-coal combustion processes for CO2 capture," Applied Energy, Elsevier, vol. 90(1), pages 113-121.
- Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pavão, L.V. & Costa, C.B.B. & Ravagnani, M.A.S.S. & Jiménez, L., 2017. "Costs and environmental impacts multi-objective heat exchanger networks synthesis using a meta-heuristic approach," Applied Energy, Elsevier, vol. 203(C), pages 304-320.
- Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "MINLP model for optimizing electricity production from coal-fired power plants considering carbon management," Energy Policy, Elsevier, vol. 51(C), pages 493-501.
- Chinnasamy Palanichamy & Palanichamy Naveen & Wong Kiing Ing & Michael Kobina Danquah & Jayaraman Indumath, 2015. "Energy Efficiency Enhancement of Fossil-Fuelled Power Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 765-771.
- Lee, Suh-Young & Lee, Jae-Uk & Lee, In-Beum & Han, Jeehoon, 2017. "Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk," Applied Energy, Elsevier, vol. 189(C), pages 725-738.
- Jiang, Bingbing & Wang, Xianfeng & Gray, McMahan L. & Duan, Yuhua & Luebke, David & Li, Bingyun, 2013. "Development of amino acid and amino acid-complex based solid sorbents for CO2 capture," Applied Energy, Elsevier, vol. 109(C), pages 112-118.
- Lee, Suh-Young & Lee, In-Beum & Han, Jeehoon, 2019. "Design under uncertainty of carbon capture, utilization and storage infrastructure considering profit, environmental impact, and risk preference," Applied Energy, Elsevier, vol. 238(C), pages 34-44.
- Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
- Guan, Panbo & Huang, Guohe & Wu, Chuanbao & Wang, Linrui & Li, Chaoci & Wang, Yuanyi, 2019. "Analysis of emission taxes levying on regional electric power structure adjustment with an inexact optimization model - A case study of Zibo, China," Energy Economics, Elsevier, vol. 84(C).
- Huang, Qian & Xu, Jiuping, 2020. "Bi-level multi-objective programming approach for carbon emission quota allocation towards co-combustion of coal and sewage sludge," Energy, Elsevier, vol. 211(C).
- Safdarnejad, Seyed Mostafa & Hedengren, John D. & Powell, Kody M., 2018. "Performance comparison of low temperature and chemical absorption carbon capture processes in response to dynamic electricity demand and price profiles," Applied Energy, Elsevier, vol. 228(C), pages 577-592.
- Zhang, Yiyi & Wang, Jiaqi & Zhang, Linmei & Liu, Jiefeng & Zheng, Hanbo & Fang, Jiake & Hou, Shengren & Chen, Shaoqing, 2020. "Optimization of China’s electric power sector targeting water stress and carbon emissions," Applied Energy, Elsevier, vol. 271(C).
- Luo, Xianglong & Hu, Jiahao & Zhao, Jun & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2014. "Multi-objective optimization for the design and synthesis of utility systems with emission abatement technology concerns," Applied Energy, Elsevier, vol. 136(C), pages 1110-1131.
- Yan, Shiyu & Lv, Chengwei & Yao, Liming & Hu, Zhineng & Wang, Fengjuan, 2022. "Hybrid dynamic coal blending method to address multiple environmental objectives under a carbon emissions allocation mechanism," Energy, Elsevier, vol. 254(PB).
- Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
- Fernández, David & Pozo, Carlos & Folgado, Rubén & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano, 2017. "Multiperiod model for the optimal production planning in the industrial gases sector," Applied Energy, Elsevier, vol. 206(C), pages 667-682.
- Shen Wang & Guohe Huang & Yurui Fan, 2018. "A Multistage Distribution-Generation Planning Model for Clean Power Generation under Multiple Uncertainties—A Case Study of Urumqi, China," Sustainability, MDPI, vol. 10(9), pages 1-30, September.
- Zhang, Kefang & Liu, Zhongliang & Wang, Yuanya & Li, Yanxia & Li, Qingfang & Zhang, Jian & Liu, Haili, 2014. "Flash evaporation and thermal vapor compression aided energy saving CO2 capture systems in coal-fired power plant," Energy, Elsevier, vol. 66(C), pages 556-568.
- Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2013. "Operational planning optimization of steam power plants considering equipment failure in petrochemical complex," Applied Energy, Elsevier, vol. 112(C), pages 1247-1264.
- Anderson, Jeffrey J. & Rode, David & Zhai, Haibo & Fischbeck, Paul, 2021. "Transitioning to a carbon-constrained world: Reductions in coal-fired power plant emissions through unit-specific, least-cost mitigation frontiers," Applied Energy, Elsevier, vol. 288(C).
- Hnydiuk-Stefan, Anna & Składzień, Jan, 2017. "Analysis of supercritical coal fired oxy combustion power plant with cryogenic oxygen unit and turbo-compressor," Energy, Elsevier, vol. 128(C), pages 271-283.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.
- Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.
- Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015.
"Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model,"
Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
- Jian-Lei Mo & Joachim Schleich & Lei Zhu & Ying Fan, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Grenoble Ecole de Management (Post-Print) hal-01265934, HAL.
- Jian-Lei Mo & Joachim Schleich & Lei Zhu & Ying Fan, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Post-Print hal-01265934, HAL.
- Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
- Lee, Suh-Young & Lee, Jae-Uk & Lee, In-Beum & Han, Jeehoon, 2017. "Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk," Applied Energy, Elsevier, vol. 189(C), pages 725-738.
- Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
- Wu Haibo & Liu Zhaohui, 2018. "Economic research relating to a 200 MWe oxy‐fuel combustion power plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 911-919, October.
- Tang, YuTing & Ma, XiaoQian & Lai, ZhiYi & Chen, Yong, 2013. "Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China," Energy Policy, Elsevier, vol. 60(C), pages 132-141.
- Siefert, Nicholas S. & Chang, Brian Y. & Litster, Shawn, 2014. "Exergy and economic analysis of a CaO-looping gasifier for IGFC–CCS and IGCC–CCS," Applied Energy, Elsevier, vol. 128(C), pages 230-245.
- Almansoori, Ali & Betancourt-Torcat, Alberto, 2015. "Design optimization model for the integration of renewable and nuclear energy in the United Arab Emirates’ power system," Applied Energy, Elsevier, vol. 148(C), pages 234-251.
- Meleesa Naughton & Richard C. Darton & Fai Fung, 2012. "Could Climate Change Limit Water Availability for Coal-Fired Electricity Generation with Carbon Capture and Storage? A UK Case Study," Energy & Environment, , vol. 23(2-3), pages 265-282, May.
- Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
- Hong-Hua Qiu & Lu-Ge Liu, 2018. "A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping," Energies, MDPI, vol. 11(5), pages 1-25, May.
- Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2013. "Combustion vs. gasification for a demonstration CCS (carbon capture and storage) project in Italy: A techno-economic analysis," Energy, Elsevier, vol. 50(C), pages 160-169.
- Liu, Jiangfeng & Zhang, Qi & Li, Hailong & Chen, Siyuan & Teng, Fei, 2022. "Investment decision on carbon capture and utilization (CCU) technologies—A real option model based on technology learning effect," Applied Energy, Elsevier, vol. 322(C).
- Nadine Heitmann & Christine Bertram & Daiju Narita, 2012.
"Embedding CCS infrastructure into the European electricity system: a policy coordination problem,"
Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 669-686, August.
- Heitmann, Nadine & Bertram, Christine & Narita, Daiju, 2010. "Embedding CCS infrastructure into the European electricity system: A policy coordination problem," Kiel Working Papers 1657, Kiel Institute for the World Economy (IfW Kiel).
- Chen, Shiyi & Xiang, Wenguo & Wang, Dong & Xue, Zhipeng, 2012. "Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture," Applied Energy, Elsevier, vol. 95(C), pages 285-294.
- Lei Zhu & Xing Yao & Xian Zhang, 2020. "Evaluation of cooperative mitigation: captured carbon dioxide for enhanced oil recovery," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1261-1285, October.
- Yerbol Sarbassov & Lunbo Duan & Vasilije Manovic & Edward J. Anthony, 2018. "Sulfur trioxide formation/emissions in coal‐fired air‐ and oxy‐fuel combustion processes: a review," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 402-428, June.
- Manfred Lenzen & Roberto Schaeffer, 2012. "Historical and potential future contributions of power technologies to global warming," Climatic Change, Springer, vol. 112(3), pages 601-632, June.
More about this item
Keywords
Coal combustion; Electricity production; Multi-objective optimization; Environmental sustainability; CO2 capture technologies;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:98:y:2012:i:c:p:266-272. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.