IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i4p1281-1290.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Optimal operation conditions for a single-stage heat transformer by means of an artificial neural network inverse

Author

Listed:
  • Colorado, D.
  • Hernández, J.A.
  • Rivera, W.
  • Martínez, H.
  • Juárez, D.

Abstract

Analysis based on first and second law of thermodynamics together with direct and artificial neural networks inverse (ANNi) have been used to develop a methodology to decrease the total irreversibility of an experimental single-stage heat transformer. With the proposed methodology it is possible to calculate the optimal input parameters that should be used in order to operate the heat transformer with the lower irreversibilities. Mathematical validation of ANNi was carried out together with the comparison between the total cycle irreversibility (Icycle) obtained thermodynamically and the Icycle determined by using the ANNi. The results showed a mean discrepancy of 0.9% of the Icycle values. The proposed new methodology can be very useful to control on-line the performance of a single-state heat transformer obtaining lower Icycle values.

Suggested Citation

  • Colorado, D. & Hernández, J.A. & Rivera, W. & Martínez, H. & Juárez, D., 2011. "Optimal operation conditions for a single-stage heat transformer by means of an artificial neural network inverse," Applied Energy, Elsevier, vol. 88(4), pages 1281-1290, April.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:4:p:1281-1290
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00401-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Şencan, Arzu & Yakut, Kemal A. & Kalogirou, Soteris A., 2006. "Thermodynamic analysis of absorption systems using artificial neural network," Renewable Energy, Elsevier, vol. 31(1), pages 29-43.
    2. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    3. Cortés, O. & Urquiza, G. & Hernández, J.A., 2009. "Optimization of operating conditions for compressor performance by means of neural network inverse," Applied Energy, Elsevier, vol. 86(11), pages 2487-2493, November.
    4. Kelly Kissock, J. & Eger, Carl, 2008. "Measuring industrial energy savings," Applied Energy, Elsevier, vol. 85(5), pages 347-361, May.
    5. Sözen, Adnan, 2004. "Effect of irreversibilities on performance of an absorption heat transformer used to increase solar pond’s temperature," Renewable Energy, Elsevier, vol. 29(4), pages 501-515.
    6. Zhao, Zongchang & Zhang, Xiaodong & Ma, Xuehu, 2005. "Thermodynamic performance of a double-effect absorption heat-transformer using TFE/E181 as the working fluid," Applied Energy, Elsevier, vol. 82(2), pages 107-116, October.
    7. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    8. Sun, Fengrui & Qin, Xiaoyong & Chen, Lingen & Wu, Chih, 2005. "Optimization between heating load and entropy-production rate for endoreversible absorption heat-transformers," Applied Energy, Elsevier, vol. 81(4), pages 434-448, August.
    9. Hernández, J.A. & Bassam, A. & Siqueiros, J. & Juárez-Romero, D., 2009. "Optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using neural network inverse," Renewable Energy, Elsevier, vol. 34(4), pages 1084-1091.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xingrang & Bansal, R.C., 2014. "Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant," Applied Energy, Elsevier, vol. 130(C), pages 658-669.
    2. Zhang, Wenyu & Wu, Jie & Wang, Jianzhou & Zhao, Weigang & Shen, Lin, 2012. "Performance analysis of four modified approaches for wind speed forecasting," Applied Energy, Elsevier, vol. 99(C), pages 324-333.
    3. Lefeng Cheng & Tao Yu, 2018. "Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey," Energies, MDPI, vol. 11(4), pages 1-69, April.
    4. Donnellan, Philip & Byrne, Edmond & Oliveira, Jorge & Cronin, Kevin, 2014. "First and second law multidimensional analysis of a triple absorption heat transformer (TAHT)," Applied Energy, Elsevier, vol. 113(C), pages 141-151.
    5. Parrales, Arianna & Colorado, Dario & Huicochea, Armando & Díaz, Juan & Alfredo Hernández, J., 2014. "Void fraction correlations analysis and their influence on heat transfer of helical double-pipe vertical evaporator," Applied Energy, Elsevier, vol. 127(C), pages 156-165.
    6. Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based on Chemical Reaction Optimization and Twin Support Vector Machine," Energies, MDPI, vol. 12(5), pages 1-18, March.
    7. Donnellan, Philip & Cronin, Kevin & Byrne, Edmond, 2015. "Recycling waste heat energy using vapour absorption heat transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1290-1304.
    8. Labus, J. & Hernández, J.A. & Bruno, J.C. & Coronas, A., 2012. "Inverse neural network based control strategy for absorption chillers," Renewable Energy, Elsevier, vol. 39(1), pages 471-482.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donnellan, Philip & Cronin, Kevin & Byrne, Edmond, 2015. "Recycling waste heat energy using vapour absorption heat transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1290-1304.
    2. Labus, J. & Hernández, J.A. & Bruno, J.C. & Coronas, A., 2012. "Inverse neural network based control strategy for absorption chillers," Renewable Energy, Elsevier, vol. 39(1), pages 471-482.
    3. Parham, Kiyan & Khamooshi, Mehrdad & Tematio, Daniel Boris Kenfack & Yari, Mortaza & Atikol, Uğur, 2014. "Absorption heat transformers – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 430-452.
    4. Hannah Jessie Rani R. & Aruldoss Albert Victoire T., 2018. "Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-35, May.
    5. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    6. Álvarez, María E. & Hernández, José A. & Bourouis, Mahmoud, 2016. "Modelling the performance parameters of a horizontal falling film absorber with aqueous (lithium, potassium, sodium) nitrate solution using artificial neural networks," Energy, Elsevier, vol. 102(C), pages 313-323.
    7. Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.
    8. Cao, Haibo & Li, Zhexu & Peng, Wanli & Yang, Hanxin & Guo, Juncheng, 2023. "Optimal analyses and performance bounds of the low-dissipation three-terminal heat transformer: The roles of the parameter constraints and optimization criteria," Energy, Elsevier, vol. 277(C).
    9. Souliotis, M. & Kalogirou, S. & Tripanagnostopoulos, Y., 2009. "Modelling of an ICS solar water heater using artificial neural networks and TRNSYS," Renewable Energy, Elsevier, vol. 34(5), pages 1333-1339.
    10. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    11. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    12. Arslan, Oguz, 2011. "Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34," Energy, Elsevier, vol. 36(5), pages 2528-2534.
    13. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2012. "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1340-1358.
    14. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens," Renewable Energy, Elsevier, vol. 35(7), pages 1357-1362.
    15. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    16. Sukjoon Oh & John F. Gardner, 2022. "Large Scale Energy Signature Analysis: Tools for Utility Managers and Planners," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    17. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    18. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    19. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    20. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:4:p:1281-1290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.