IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i6p1870-1879.html
   My bibliography  Save this article

A new spinning reserve requirement forecast method for deregulated electricity markets

Author

Listed:
  • Amjady, Nima
  • Keynia, Farshid

Abstract

Ancillary services are necessary for maintaining the security and reliability of power systems and constitute an important part of trade in competitive electricity markets. Spinning Reserve (SR) is one of the most important ancillary services for saving power system stability and integrity in response to contingencies and disturbances that continuously occur in the power systems. Hence, an accurate day-ahead forecast of SR requirement helps the Independent System Operator (ISO) to conduct a reliable and economic operation of the power system. However, SR signal has complex, non-stationary and volatile behavior along the time domain and depends greatly on system load. In this paper, a new hybrid forecast engine is proposed for SR requirement prediction. The proposed forecast engine has an iterative training mechanism composed of Levenberg-Marquadt (LM) learning algorithm and Real Coded Genetic Algorithm (RCGA), implemented on the Multi-Layer Perceptron (MLP) neural network. The proposed forecast methodology is examined by means of real data of Pennsylvania-New Jersey-Maryland (PJM) electricity market and the California ISO (CAISO) controlled grid. The obtained forecast results are presented and compared with those of the other SR forecast methods.

Suggested Citation

  • Amjady, Nima & Keynia, Farshid, 2010. "A new spinning reserve requirement forecast method for deregulated electricity markets," Applied Energy, Elsevier, pages 1870-1879.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:6:p:1870-1879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00470-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diongue, Abdou Kâ & Guégan, Dominique & Vignal, Bertrand, 2009. "Forecasting electricity spot market prices with a k-factor GIGARCH process," Applied Energy, Elsevier, vol. 86(4), pages 505-510, April.
    2. Georgopoulou, Chariklia A. & Giannakoglou, Kyriakos C., 2009. "Two-level, two-objective evolutionary algorithms for solving unit commitment problems," Applied Energy, Elsevier, vol. 86(7-8), pages 1229-1239, July.
    3. Amjady, N. & Keynia, F., 2009. "Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm," Energy, Elsevier, vol. 34(1), pages 46-57.
    4. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    5. repec:hal:journl:halshs-00307606 is not listed on IDEAS
    6. Pinson, P. & Nielsen, H.Aa. & Madsen, H. & Kariniotakis, G., 2009. "Skill forecasting from ensemble predictions of wind power," Applied Energy, Elsevier, vol. 86(7-8), pages 1326-1334, July.
    7. Aghaei, J. & Shayanfar, H.A. & Amjady, N., 2009. "Joint market clearing in a stochastic framework considering power system security," Applied Energy, Elsevier, vol. 86(9), pages 1675-1682, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Canizes, Bruno & Soares, João & Faria, Pedro & Vale, Zita, 2013. "Mixed integer non-linear programming and Artificial Neural Network based approach to ancillary services dispatch in competitive electricity markets," Applied Energy, Elsevier, vol. 108(C), pages 261-270.
    2. Liu, Fan & Bie, Zhaohong & Liu, Shiyu & Ding, Tao, 2017. "Day-ahead optimal dispatch for wind integrated power system considering zonal reserve requirements," Applied Energy, Elsevier, vol. 188(C), pages 399-408.
    3. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    4. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:6:p:1870-1879. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.