IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v81y2005i1p33-53.html
   My bibliography  Save this article

Thermal performance of a shallow solar-pond integrated with a baffle plate

Author

Listed:
  • El-Sebaii, A.A.

Abstract

A shallow solar-pond integrated with a baffle plate is investigated theoretically and experimentally under Tanta prevailing weather conditions. A transient mathematical model is presented for the pond. The energy-balance equations for various parts of the pond are solved analytically using the elimination technique. In order to validate the theoretical model, experiments are performed under the batch mode of heat extraction with a black painted baffle plate made of stainless steel, with and without vents in the plate, for different masses of water in the upper and lower layers. It is found that the pond-water temperature decreases with increasing vent area; therefore, the baffle plate should be used without vents with shallow depths of the upper water-layer. Experiments have also been carried out using baffle plates made from Al and mica in order to study the effect of the thermal conductivity of the baffle plate on the pond's performance. The average temperature of the pond water is found to be less dependent on the thermal conductivity of the baffle plate. It is also inferred that the present system could provide 88 L of hot water at a maximum temperature of 71 °C at 3:00 pm with a daily efficiency of 64.3% when the baffle plate is used without vents. The pond can retain hot water until 7:00 am of the next day at a temperature of 43 °C, which can be used for most domestic applications. Comparisons between experimental and theoretical results indicated that the theoretical model could be used for estimating the pond's performance with good accuracy.

Suggested Citation

  • El-Sebaii, A.A., 2005. "Thermal performance of a shallow solar-pond integrated with a baffle plate," Applied Energy, Elsevier, vol. 81(1), pages 33-53, May.
  • Handle: RePEc:eee:appene:v:81:y:2005:i:1:p:33-53
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00096-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prakash, J. & Garg, H.P. & Datta, G., 1983. "Effect of baffle plate on the performance of built-in storage type solar water heater," Energy, Elsevier, vol. 8(5), pages 381-387.
    2. El-Sebaii, A.A & Aboul-Enein, S & Ramadan, M.R.I & El-Bialy, E, 2000. "Year-round performance of a modified single-basin solar still with mica plate as a suspended absorber," Energy, Elsevier, vol. 25(1), pages 35-49.
    3. Aboul-Enein, S. & El-Sebaii, A. A. & Ramadan, M. R. I. & Khallaf, A. M., 2004. "Parametric study of a shallow solar-pond under the batch mode of heat extraction," Applied Energy, Elsevier, vol. 78(2), pages 159-177, June.
    4. Parkash, J. & Garg, H.P. & Datta, G., 1985. "Performance prediction for a built-in, storage-type solar water heater," Energy, Elsevier, vol. 10(11), pages 1209-1213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Velmurugan, V. & Srithar, K., 2008. "Prospects and scopes of solar pond: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2253-2263, October.
    2. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    3. El-Sebaii, A.A. & Ramadan, M.R.I. & Aboul-Enein, S. & Khallaf, A.M., 2011. "History of the solar ponds: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3319-3325, August.
    4. Garnier, Celine & Muneer, Tariq & Currie, John, 2018. "Numerical and empirical evaluation of a novel building integrated collector storage solar water heater," Renewable Energy, Elsevier, vol. 126(C), pages 281-295.
    5. Ranjan, K.R. & Kaushik, S.C., 2014. "Thermodynamic and economic feasibility of solar ponds for various thermal applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 123-139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Sebaii, A.A & Aboul-Enein, S & Ramadan, M.R.I & El-Bialy, E, 2000. "Year-round performance of a modified single-basin solar still with mica plate as a suspended absorber," Energy, Elsevier, vol. 25(1), pages 35-49.
    2. El-Sebaii, A.A. & Ramadan, M.R.I. & Aboul-Enein, S. & Khallaf, A.M., 2011. "History of the solar ponds: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3319-3325, August.
    3. Ganguly, Sayantan & Date, Abhijit & Akbarzadeh, Aliakbar, 2019. "On increasing the thermal mass of a salinity gradient solar pond with external heat addition: A transient study," Energy, Elsevier, vol. 168(C), pages 43-56.
    4. El-Sebaii, A.A. & Al-Ghamdi, A.A. & Al-Hazmi, F.S. & Faidah, Adel S., 2009. "Thermal performance of a single basin solar still with PCM as a storage medium," Applied Energy, Elsevier, vol. 86(7-8), pages 1187-1195, July.
    5. Kumar, Naveen & Chavda, Tilak & Mistry, H.N., 2010. "A truncated pyramid non-tracking type multipurpose domestic solar cooker/hot water system," Applied Energy, Elsevier, vol. 87(2), pages 471-477, February.
    6. Garg, H.P. & Avanti, P. & Datta, G., 1998. "Development of nomogram for performance prediction of integrated collector-storage(ICS) solar water heating systems," Renewable Energy, Elsevier, vol. 14(1), pages 11-16.
    7. Singh, Ramkishore & Lazarus, Ian J. & Souliotis, Manolis, 2016. "Recent developments in integrated collector storage (ICS) solar water heaters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 270-298.
    8. Ould Dah, M.M. & Ouni, M. & Guizani, A. & Belghith, A., 2010. "The influence of the heat extraction mode on the performance and stability of a mini solar pond," Applied Energy, Elsevier, vol. 87(10), pages 3005-3010, October.
    9. Velmurugan, V. & Srithar, K., 2008. "Prospects and scopes of solar pond: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2253-2263, October.
    10. Sebastian, Geo & Thomas, Shijo, 2021. "Influence of providing a three-layer spectrally selective floating absorber on passive single slope solar still productivity under tropical conditions," Energy, Elsevier, vol. 214(C).
    11. Tripanagnostopoulos, Y. & Souliotis, M., 2006. "ICS solar systems with two water tanks," Renewable Energy, Elsevier, vol. 31(11), pages 1698-1717.
    12. Panchal, Hitesh N., 2016. "Use of thermal energy storage materials for enhancement in distillate output of solar still: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 86-96.
    13. Elango, C. & Gunasekaran, N. & Sampathkumar, K., 2015. "Thermal models of solar still—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 856-911.
    14. Tripanagnostopoulos, Y. & Souliotis, M., 2004. "Integrated collector storage solar systems with asymmetric CPC reflectors," Renewable Energy, Elsevier, vol. 29(2), pages 223-248.
    15. Aboul-Enein, S. & El-Sebaii, A. A. & Ramadan, M. R. I. & Khallaf, A. M., 2004. "Parametric study of a shallow solar-pond under the batch mode of heat extraction," Applied Energy, Elsevier, vol. 78(2), pages 159-177, June.
    16. Sharon, H. & Reddy, K.S., 2015. "Performance investigation and enviro-economic analysis of active vertical solar distillation units," Energy, Elsevier, vol. 84(C), pages 794-807.
    17. Muthu Manokar, A. & Kalidasa Murugavel, K. & Esakkimuthu, G., 2014. "Different parameters affecting the rate of evaporation and condensation on passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 309-322.
    18. Raisul Islam, M. & Sumathy, K. & Ullah Khan, Samee, 2013. "Solar water heating systems and their market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 1-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:81:y:2005:i:1:p:33-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.