IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i11p1698-1717.html
   My bibliography  Save this article

ICS solar systems with two water tanks

Author

Listed:
  • Tripanagnostopoulos, Y.
  • Souliotis, M.

Abstract

Integrated collector storage (ICS) systems are compact solar water heaters, simple in construction, installation and operation. They are cheaper than flat plate thermosiphonic units, but their higher thermal losses make them suitable mainly for application in locations with favourable weather conditions. Aiming to the achievement of low system height and satisfactory water temperature stratification, new types of ICS systems with two horizontal cylindrical storage tanks, properly mounted in stationary CPC reflector troughs are suggested. The non-uniform distribution of solar radiation on the two absorbing surfaces is combined with the seasonal sun elevation, resulting to effective water heating. In addition, the inverted absorber concept design can be applied to ICS systems with two storage tanks. In this paper, we present the design and performance of double tank ICS solar systems, which are based on the combination of symmetric and asymmetric CPC reflectors with water storage tanks. The analytical equations of the collector geometry of all models are calculated with respect to the radius of the cylindrical water storage tank and the reflector rim angles. Experimental results for the variation of the water temperature inside storage tanks, the mean daily efficiency and the coefficient of thermal losses during night are given for all experimental models. The tests were performed without water draining and the results show that the double tank ICS systems are efficient in water temperature rise during day and satisfactory preservation of the hot water temperature during night, with the upper storage tank being more effective in performance in most of the studied models.

Suggested Citation

  • Tripanagnostopoulos, Y. & Souliotis, M., 2006. "ICS solar systems with two water tanks," Renewable Energy, Elsevier, vol. 31(11), pages 1698-1717.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:11:p:1698-1717
    DOI: 10.1016/j.renene.2005.08.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148105002545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.08.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prakash, J. & Garg, H.P. & Datta, G., 1983. "Effect of baffle plate on the performance of built-in storage type solar water heater," Energy, Elsevier, vol. 8(5), pages 381-387.
    2. Tripanagnostopoulos, Y. & Souliotis, M., 2004. "ICS solar systems with horizontal cylindrical storage tank and reflector of CPC or involute geometry," Renewable Energy, Elsevier, vol. 29(1), pages 13-38.
    3. Tripanagnostopoulos, Y. & Souliotis, M., 2004. "ICS solar systems with horizontal (E–W) and vertical (N–S) cylindrical water storage tank," Renewable Energy, Elsevier, vol. 29(1), pages 73-96.
    4. Kalogirou, Soteris A., 1999. "Performance enhancement of an integrated collector storage hot water system," Renewable Energy, Elsevier, vol. 16(1), pages 652-655.
    5. Tripanagnostopoulos, Y. & Souliotis, M. & Nousia, Th., 1999. "Solar ICS systems with two cylindrical storage tanks," Renewable Energy, Elsevier, vol. 16(1), pages 665-668.
    6. Tripanagnostopoulos, Y. & Souliotis, M., 2004. "Integrated collector storage solar systems with asymmetric CPC reflectors," Renewable Energy, Elsevier, vol. 29(2), pages 223-248.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evangelos Bellos & Dimitrios N. Korres & Christos Tzivanidis, 2023. "Investigation of a Compound Parabolic Collector with a Flat Glazing," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    2. Azzolin, Marco & Mariani, Andrea & Moro, Lorenzo & Tolotto, Andrea & Toninelli, Paolo & Del Col, Davide, 2018. "Mathematical model of a thermosyphon integrated storage solar collector," Renewable Energy, Elsevier, vol. 128(PA), pages 400-415.
    3. Kessentini, Hamdi & Bouden, Chiheb, 2013. "Numerical and experimental study of an integrated solar collector with CPC reflectors," Renewable Energy, Elsevier, vol. 57(C), pages 577-586.
    4. Souliotis, Manolis & Papaefthimiou, Spiros & Caouris, Yiannis G. & Zacharopoulos, Aggelos & Quinlan, Patrick & Smyth, Mervyn, 2017. "Integrated collector storage solar water heater under partial vacuum," Energy, Elsevier, vol. 139(C), pages 991-1002.
    5. Devanarayanan, K. & Kalidasa Murugavel, K., 2014. "Integrated collector storage solar water heater with compound parabolic concentrator – development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 51-64.
    6. Singh, Ramkishore & Lazarus, Ian J. & Souliotis, Manolis, 2016. "Recent developments in integrated collector storage (ICS) solar water heaters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 270-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Souliotis, M. & Kalogirou, S. & Tripanagnostopoulos, Y., 2009. "Modelling of an ICS solar water heater using artificial neural networks and TRNSYS," Renewable Energy, Elsevier, vol. 34(5), pages 1333-1339.
    2. Devanarayanan, K. & Kalidasa Murugavel, K., 2014. "Integrated collector storage solar water heater with compound parabolic concentrator – development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 51-64.
    3. Singh, Ramkishore & Lazarus, Ian J. & Souliotis, Manolis, 2016. "Recent developments in integrated collector storage (ICS) solar water heaters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 270-298.
    4. Souliotis, M. & Tripanagnostopoulos, Y., 2008. "Study of the distribution of the absorbed solar radiation on the performance of a CPC-type ICS water heater," Renewable Energy, Elsevier, vol. 33(5), pages 846-858.
    5. Smyth, M. & Eames, P.C. & Norton, B., 2006. "Integrated collector storage solar water heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 503-538, December.
    6. Yassen, Tadahmun A. & Mokhlif, Nassir D. & Eleiwi, Muhammad Asmail, 2019. "Performance investigation of an integrated solar water heater with corrugated absorber surface for domestic use," Renewable Energy, Elsevier, vol. 138(C), pages 852-860.
    7. Souliotis, Manolis & Papaefthimiou, Spiros & Caouris, Yiannis G. & Zacharopoulos, Aggelos & Quinlan, Patrick & Smyth, Mervyn, 2017. "Integrated collector storage solar water heater under partial vacuum," Energy, Elsevier, vol. 139(C), pages 991-1002.
    8. Souliotis, M. & Chemisana, D. & Caouris, Y.G. & Tripanagnostopoulos, Y., 2013. "Experimental study of integrated collector storage solar water heaters," Renewable Energy, Elsevier, vol. 50(C), pages 1083-1094.
    9. Raisul Islam, M. & Sumathy, K. & Ullah Khan, Samee, 2013. "Solar water heating systems and their market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 1-25.
    10. Erdemir, Dogan & Atesoglu, Hakan & Altuntop, Necdet, 2019. "Experimental investigation on enhancement of thermal performance with obstacle placing in the horizontal hot water tank used in solar domestic hot water system," Renewable Energy, Elsevier, vol. 138(C), pages 187-197.
    11. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    12. Srinivas, Morapakala, 2011. "Domestic solar hot water systems: Developments, evaluations and essentials for “viability” with a special reference to India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3850-3861.
    13. Evangelos Bellos & Dimitrios N. Korres & Christos Tzivanidis, 2023. "Investigation of a Compound Parabolic Collector with a Flat Glazing," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    14. Garnier, Celine & Muneer, Tariq & Currie, John, 2018. "Numerical and empirical evaluation of a novel building integrated collector storage solar water heater," Renewable Energy, Elsevier, vol. 126(C), pages 281-295.
    15. Fahim Ullah & Mansoor K Khattak & Kang Min, 2018. "Experimental investigation of the comparison of compound parabolic concentrator and ordinary heat pipe-type solar concentrator," Energy & Environment, , vol. 29(5), pages 770-783, August.
    16. El-Sebaii, A.A & Aboul-Enein, S & Ramadan, M.R.I & El-Bialy, E, 2000. "Year-round performance of a modified single-basin solar still with mica plate as a suspended absorber," Energy, Elsevier, vol. 25(1), pages 35-49.
    17. Farzan, Hadi & Ameri, Mehran & Mahmoudi, Mojtaba, 2023. "Thermal assessment of a new planar thermal diode integrated collector storage solar water heater in different partial vacuums: An experimental study," Renewable Energy, Elsevier, vol. 208(C), pages 119-129.
    18. Harmim, A. & Boukar, M. & Amar, M. & Haida, Aek, 2019. "Simulation and experimentation of an integrated collector storage solar water heater designed for integration into building facade," Energy, Elsevier, vol. 166(C), pages 59-71.
    19. Kessentini, Hamdi & Bouden, Chiheb, 2013. "Numerical and experimental study of an integrated solar collector with CPC reflectors," Renewable Energy, Elsevier, vol. 57(C), pages 577-586.
    20. Carboni, Christian & Montanari, Roberto, 2008. "Solar thermal systems: Advantages in domestic integration," Renewable Energy, Elsevier, vol. 33(6), pages 1364-1373.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:11:p:1698-1717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.