IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v78y2004i4p419-431.html
   My bibliography  Save this article

A microcontroller-based stand-alone photovoltaic power system for residential appliances

Author

Listed:
  • Akkaya, R.
  • Kulaksiz, A. A.

Abstract

In this study, a stand-alone photovoltaic power system was designed and implemented to operate residential ac-powered appliances such as fluorescent lambs, fans etc. Sun-tracker is implemented for improved efficiency of the system by keeping the solar module perpendicular to the sun's incoming rays. The charge method is realized with closed-loop current control of buck-boost dc-dc converter. The proposed system also uses a voltage source type PWM inverter to convert DC voltage from battery storage to supply AC loads. In the PWM method used, selected harmonics are eliminated with the smallest number of switching and an improvement in the system efficiency by reducing switching losses and providing ease of filtering on the inverter output is obtained. Charge controller and PWM inverter systems have been realized by using PIC16F873 microcontrollers. An experimental system was implemented to demonstrate the effectiveness of the proposed system. Simulation and experimental results are given to verify the system's efficiency.

Suggested Citation

  • Akkaya, R. & Kulaksiz, A. A., 2004. "A microcontroller-based stand-alone photovoltaic power system for residential appliances," Applied Energy, Elsevier, vol. 78(4), pages 419-431, August.
  • Handle: RePEc:eee:appene:v:78:y:2004:i:4:p:419-431
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00193-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhuiyan, M.M.H. & Ali Asgar, M., 2003. "Sizing of a stand-alone photovoltaic power system at Dhaka," Renewable Energy, Elsevier, vol. 28(6), pages 929-938.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Humada, Ali M. & Aaref, Ashty M. & Hamada, Hussein M. & Sulaiman, Mohd Herwan & Amin, Nowshad & Mekhilef, Saad, 2018. "Modeling and characterization of a grid-connected photovoltaic system under tropical climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2094-2105.
    2. Kim, Younghyun & Lee, Woojoo & Pedram, Massoud & Chang, Naehyuck, 2013. "Dual-mode power regulator for photovoltaic module emulation," Applied Energy, Elsevier, vol. 101(C), pages 730-739.
    3. Periasamy, Packiam & Jain, N.K. & Singh, I.P., 2015. "A review on development of photovoltaic water pumping system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 918-925.
    4. Kang, Feel-soon & Park, Sung-Jun & Cho, Su Eog & Kim, Jang-Mok, 2005. "Photovoltaic power interface circuit incorporated with a buck-boost converter and a full-bridge inverter," Applied Energy, Elsevier, vol. 82(3), pages 266-283, November.
    5. Werulkar, Ashutosh Sudhirrao & Kulkarni, Prakash S., 2015. "A case study of residential solar photovoltaic system with utility backup in Nagpur, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1809-1822.
    6. Belqasem Aljafari & Ashok Kumar Loganathan & Indragandhi Vairavasundaram & Selvamathi Ramachadran & Amutha Prabha Nagarajan, 2022. "Analysis of a Photovoltaic System Based on a Highly Efficient Single-Phase Transformerless Inverter," Energies, MDPI, vol. 15(17), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    2. Jinyoung Song & Yosoon Choi, 2016. "Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea," Energies, MDPI, vol. 9(2), pages 1-13, February.
    3. Alberto-Jesus Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Javier Garrido & Joel Donaldo Verdugo-Diaz, 2018. "Stand-Alone Photovoltaic System Assessment in Warmer Urban Areas in Mexico," Energies, MDPI, vol. 11(2), pages 1-13, January.
    4. Al-Smairan, Mohammad, 2012. "Application of photovoltaic array for pumping water as an alternative to diesel engines in Jordan Badia, Tall Hassan station: Case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4500-4507.
    5. Kaldellis, J.K. & Koronakis, P. & Kavadias, K., 2004. "Energy balance analysis of a stand-alone photovoltaic system, including variable system reliability impact," Renewable Energy, Elsevier, vol. 29(7), pages 1161-1180.
    6. Sarhan, Ameen & Hizam, Hashim & Mariun, Norman & Ya'acob, M.E., 2019. "An improved numerical optimization algorithm for sizing and configuration of standalone photo-voltaic system components in Yemen," Renewable Energy, Elsevier, vol. 134(C), pages 1434-1446.
    7. Gomes, I.L.R. & Pousinho, H.M.I. & MelĂ­cio, R. & Mendes, V.M.F., 2017. "Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market," Energy, Elsevier, vol. 124(C), pages 310-320.
    8. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    9. Amro M. Elshurafa & Mohammad H. Aldubyan, 2019. "State-of-Charge Effects on Standalone Solar-Storage Systems in Hot Climates: A Case Study in Saudi Arabia," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    10. Ren, Zhengen & Paevere, Phillip & Chen, Dong, 2019. "Feasibility of off-grid housing under current and future climates," Applied Energy, Elsevier, vol. 241(C), pages 196-211.
    11. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    12. Uzair, Muhammad & Rehman, Naveed ur & Yousuf, Muhammad Uzair, 2022. "Sensitivity analysis of capital and energy production cost for off-grid building integrated photovoltaic systems," Renewable Energy, Elsevier, vol. 186(C), pages 195-206.
    13. Kaldellis, J.K. & Kavadias, K.A., 2007. "Cost-benefit analysis of remote hybrid wind-diesel power stations: Case study Aegean Sea islands," Energy Policy, Elsevier, vol. 35(3), pages 1525-1538, March.
    14. Song, Jinyoung & Choi, Yosoon, 2015. "Design of photovoltaic systems to power aerators for natural purification of acid mine drainage," Renewable Energy, Elsevier, vol. 83(C), pages 759-766.
    15. Yosoon Choi & Jinyoung Song, 2016. "Sustainable Development of Abandoned Mine Areas Using Renewable Energy Systems: A Case Study of the Photovoltaic Potential Assessment at the Tailings Dam of Abandoned Sangdong Mine, Korea," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    16. Jakhrani, Abdul Qayoom & Othman, Al-Khalid & Rigit, Andrew Ragai Henry & Samo, Saleem Raza & Kamboh, Shakeel Ahmed, 2012. "A novel analytical model for optimal sizing of standalone photovoltaic systems," Energy, Elsevier, vol. 46(1), pages 675-682.
    17. Ghafoor, Abdul & Munir, Anjum, 2015. "Design and economics analysis of an off-grid PV system for household electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 496-502.
    18. Ibrahim, Ibrahim Anwar & Khatib, Tamer & Mohamed, Azah, 2017. "Optimal sizing of a standalone photovoltaic system for remote housing electrification using numerical algorithm and improved system models," Energy, Elsevier, vol. 126(C), pages 392-403.
    19. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    20. Okoye, Chiemeka Onyeka & Taylan, Onur & Baker, Derek K., 2016. "Solar energy potentials in strategically located cities in Nigeria: Review, resource assessment and PV system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 550-566.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:78:y:2004:i:4:p:419-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.