IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v64y1999i1-4p241-249.html
   My bibliography  Save this article

Geothermal contribution to greenhouse heating

Author

Listed:
  • Adaro, Jorge A.
  • Galimberti, Pablo D.
  • Lema, Alba I.
  • Fasulo, Amílcar
  • Barral, Jorge R.

Abstract

Plant freezing and plant-growth inhibition are among the major problems in greenhouse cultivation in the central part of Argentina. The possibility of using a constant temperature underground geothermal water source, which flows naturally, has been studied as an economic option to solve these problems. A system of heating by means of geothermal energy, with energy-conservation measures, was designed and evaluated for typical production greenhouses in the southern part of Córdoba, Argentina. The results of tests carried out during 3 years are presented. These results are really promising, taking into account the high benefit/cost relation of the design and the availability of similar geothermal resources in many farms of this region.

Suggested Citation

  • Adaro, Jorge A. & Galimberti, Pablo D. & Lema, Alba I. & Fasulo, Amílcar & Barral, Jorge R., 1999. "Geothermal contribution to greenhouse heating," Applied Energy, Elsevier, vol. 64(1-4), pages 241-249, September.
  • Handle: RePEc:eee:appene:v:64:y:1999:i:1-4:p:241-249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(99)00049-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalliopi Tataraki & Eugenia Giannini & Konstantinos Kavvadias & Zacharias Maroulis, 2020. "Cogeneration Economics for Greenhouses in Europe," Energies, MDPI, vol. 13(13), pages 1-27, July.
    2. Bouadila, Salwa & Kooli, Sami & Skouri, Safa & Lazaar, Mariem & Farhat, Abdelhamid, 2014. "Improvement of the greenhouse climate using a solar air heater with latent storage energy," Energy, Elsevier, vol. 64(C), pages 663-672.
    3. Imtiaz Hussain, M. & Ali, Asma & Lee, Gwi Hyun, 2015. "Performance and economic analyses of linear and spot Fresnel lens solar collectors used for greenhouse heating in South Korea," Energy, Elsevier, vol. 90(P2), pages 1522-1531.
    4. Yoon, Seok & Lee, Seung-Rae & Kim, Min-Jun & Kim, Woo-Jin & Kim, Geon-Young & Kim, Kyungsu, 2016. "Evaluation of stainless steel pipe performance as a ground heat exchanger in ground-source heat-pump system," Energy, Elsevier, vol. 113(C), pages 328-337.
    5. Bouadila, Salwa & Lazaar, Mariem & Skouri, Safa & Kooli, Sami & Farhat, Abdelhamid, 2014. "Assessment of the greenhouse climate with a new packed-bed solar air heater at night, in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 31-41.
    6. Eloisa Di Sipio & David Bertermann, 2017. "Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 10(11), pages 1-21, November.
    7. Singh, R.D. & Tiwari, G.N., 2010. "Energy conservation in the greenhouse system: A steady state analysis," Energy, Elsevier, vol. 35(6), pages 2367-2373.
    8. Giambastiani, B.M.S. & Tinti, F. & Mendrinos, D. & Mastrocicco, M., 2014. "Energy performance strategies for the large scale introduction of geothermal energy in residential and industrial buildings: The GEO.POWER project," Energy Policy, Elsevier, vol. 65(C), pages 315-322.
    9. Simone Pascuzzi & Alexandros Sotirios Anifantis & Ileana Blanco & Giacomo Scarascia Mugnozza, 2016. "Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study," Sustainability, MDPI, vol. 8(7), pages 1-15, July.
    10. Luo, Jin & Rohn, Joachim & Xiang, Wei & Bayer, Manfred & Priess, Anna & Wilkmann, Lucas & Steger, Hagen & Zorn, Roman, 2015. "Experimental investigation of a borehole field by enhanced geothermal response test and numerical analysis of performance of the borehole heat exchangers," Energy, Elsevier, vol. 84(C), pages 473-484.
    11. Liu, Long & Zhu, Neng & Zhao, Jing, 2016. "Thermal equilibrium research of solar seasonal storage system coupling with ground-source heat pump," Energy, Elsevier, vol. 99(C), pages 83-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:64:y:1999:i:1-4:p:241-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.