IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v398y2025ics0306261925011766.html

Controllable renewable energy scenario generation based on pattern-guided diffusion models

Author

Listed:
  • Dong, Xiaochong
  • Sun, Yingyun
  • Yang, Yue
  • Mao, Zhihang

Abstract

The frequent occurrence of extreme weather events attributed to global climate change presents challenges to the supply-demand balance in power systems with high renewable energy integration. Modeling renewable energy scenarios can effectively guide power system operation and planning. However, obtaining diverse extreme renewable energy scenarios is challenging due to the limited availability of renewable power dataset resources. To tackle this issue, the pattern-guided diffusion model (PGDM) is proposed for controllable renewable energy scenario generation. Initially, we define the scenario pattern features associated with wind and solar power generation. A contrastive pre-training model is used to learn representations of renewable energy scenarios, aiding the downstream model in understanding scenario pattern features. Subsequently, a perceptual variational autoencoder is used to map the high-dimensional scenario into a low-dimensional latent space, thus reducing the computational burden. This is combined with a conditional latent diffusion model to achieve controllable scenario generation. The renewable power dataset from Belgian transmission operator Elia was used for the case study. The proposed PGDM demonstrated lower errors in controllable scenario generation and exhibited excellent generalization performance in low probability (few-shot) and novel (zero-shot) pattern scenario generation.

Suggested Citation

  • Dong, Xiaochong & Sun, Yingyun & Yang, Yue & Mao, Zhihang, 2025. "Controllable renewable energy scenario generation based on pattern-guided diffusion models," Applied Energy, Elsevier, vol. 398(C).
  • Handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011766
    DOI: 10.1016/j.apenergy.2025.126446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925011766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Wei & Chen, Xianqing & Yang, Qiang, 2022. "Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability," Applied Energy, Elsevier, vol. 308(C).
    2. Densing, Martin & Wan, Yi, 2022. "Low-dimensional scenario generation method of solar and wind availability for representative days in energy modeling," Applied Energy, Elsevier, vol. 306(PB).
    3. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    4. Mathews, Duncan & Ó Gallachóir, Brian & Deane, Paul, 2023. "Systematic bias in reanalysis-derived solar power profiles & the potential for error propagation in long duration energy storage studies," Applied Energy, Elsevier, vol. 336(C).
    5. A. T. D. Perera & Vahid M. Nik & Deliang Chen & Jean-Louis Scartezzini & Tianzhen Hong, 2020. "Quantifying the impacts of climate change and extreme climate events on energy systems," Nature Energy, Nature, vol. 5(2), pages 150-159, February.
    6. Yeganefar, Ali & Amin-Naseri, Mohammad Reza & Sheikh-El-Eslami, Mohammad Kazem, 2020. "Improvement of representative days selection in power system planning by incorporating the extreme days of the net load to take account of the variability and intermittency of renewable resources," Applied Energy, Elsevier, vol. 272(C).
    7. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    8. Li, Shuai & Ma, Hongjie & Li, Weiyi, 2017. "Typical solar radiation year construction using k-means clustering and discrete-time Markov chain," Applied Energy, Elsevier, vol. 205(C), pages 720-731.
    9. Teichgraeber, Holger & Lindenmeyer, Constantin P. & Baumgärtner, Nils & Kotzur, Leander & Stolten, Detlef & Robinius, Martin & Bardow, André & Brandt, Adam R., 2020. "Extreme events in time series aggregation: A case study for optimal residential energy supply systems," Applied Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campion, Nicolas & Montanari, Giulia & Guzzini, Alessandro & Visser, Lennard & Alcayde, Alfredo, 2025. "Green hydrogen techno-economic assessments from simulated and measured solar photovoltaic power profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    2. Simon, Emanuel & Schaeffer, Roberto & Szklo, Alexandre, 2025. "A solar and wind clustering framework with downscaling and bias correction of reanalysis data using singular value decomposition," Energy, Elsevier, vol. 319(C).
    3. Sánchez-Hernández, Guadalupe & Jiménez-Garrote, Antonio & López-Cuesta, Miguel & Galván, Inés M. & Aler, Ricardo & Pozo-Vázquez, David, 2025. "A novel method for modeling renewable power production using ERA5: Spanish solar PV energy," Renewable Energy, Elsevier, vol. 240(C).
    4. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    5. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    6. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    7. Steinegger, Josef & Hammer, Andreas & Wallner, Stefan & Kienberger, Thomas, 2024. "Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks," Applied Energy, Elsevier, vol. 372(C).
    8. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    9. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    11. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    12. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    13. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    14. Esser, Katharina & Finke, Jonas & Bertsch, Valentin & Löschel, Andreas, 2025. "Participatory modelling to generate alternatives to support decision-makers with near-optimal decarbonisation options," Applied Energy, Elsevier, vol. 395(C).
    15. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    16. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    17. Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Hoelzen, J. & Silberhorn, D. & Schenke, F. & Stabenow, E. & Zill, T. & Bensmann, A. & Hanke-Rauschenbach, R., 2025. "H2-powered aviation – Optimized aircraft and green LH2 supply in air transport networks," Applied Energy, Elsevier, vol. 380(C).
    19. Topi Rasku & Juha Kiviluoma, 2018. "A Comparison of Widespread Flexible Residential Electric Heating and Energy Efficiency in a Future Nordic Power System," Energies, MDPI, vol. 12(1), pages 1-27, December.
    20. Valencia-Díaz, Alejandro & Toro, Eliana M. & Hincapié, Ricardo A., 2025. "Optimal planning and management of the energy–water–carbon nexus in hybrid AC/DC microgrids for sustainable development of remote communities," Applied Energy, Elsevier, vol. 377(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.