IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v394y2025ics030626192500916x.html

Effect of exchange current density and charge transfer coefficient on performance characteristics of voltage of alkaline electrolysis

Author

Listed:
  • Musa, Nur Nadhirah Syafiqa Binti Mohammad
  • Tijani, Alhassan Salami

Abstract

Alkaline electrolysis is an emerging future technology that is very important for developing sustainable renewable energy systems such as hydrogen refuel filling stations and fuel cell (FC) vehicles. Many operating parameters such as exchange current density and charge transfer coefficient (CTC) contribute to the current voltage characteristics of alkaline electrolysis. This research aims to investigate the effect of operating parameters on the performance of alkaline electrolysis. In comparison with the cathode characteristics, it was observed that at exchange current density of 3.15×10−7A/cm2, the activation overvoltage was found to be 0.39 V, whereas at exchange current density of 1×10−3A/cm2, the activation overvoltage was observed to be 0.24 V, which corresponds to about a 38 % reduction in activation overvoltage for the cathode electrode. The most interesting observation of the findings is that the results of CTC produced at the anode electrode are higher than the cathode electrode at the same exchange current density.

Suggested Citation

  • Musa, Nur Nadhirah Syafiqa Binti Mohammad & Tijani, Alhassan Salami, 2025. "Effect of exchange current density and charge transfer coefficient on performance characteristics of voltage of alkaline electrolysis," Applied Energy, Elsevier, vol. 394(C).
  • Handle: RePEc:eee:appene:v:394:y:2025:i:c:s030626192500916x
    DOI: 10.1016/j.apenergy.2025.126186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192500916X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Tao & Song, Lingjun & Yang, Fuyuan & Ouyang, Minggao, 2024. "Research on oxygen purity based on industrial scale alkaline water electrolysis system with 50Nm3 H2/h," Applied Energy, Elsevier, vol. 360(C).
    2. De Silva, Y. Sanath K. & Middleton, Peter Hugh & Kolhe, Mohan Lal, 2020. "Performance comparison of mono-polar and bi-polar configurations of alkaline electrolysis stack through 3-D modelling and experimental fabrication," Renewable Energy, Elsevier, vol. 149(C), pages 760-772.
    3. Cheng, Haoran & Xia, Yanghong & Hu, Zhiyuan & Wei, Wei, 2024. "Optimum pulse electrolysis for efficiency enhancement of hydrogen production by alkaline water electrolyzers," Applied Energy, Elsevier, vol. 358(C).
    4. Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
    5. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2017. "Modelling and simulation of an alkaline electrolyser cell," Energy, Elsevier, vol. 138(C), pages 316-331.
    6. Huang, Danji & Xiong, Binyu & Fang, Jiakun & Hu, Kewei & Zhong, Zhiyao & Ying, Yuheng & Ai, Xiaomeng & Chen, Zhe, 2022. "A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell," Applied Energy, Elsevier, vol. 314(C).
    7. Olivier, Pierre & Bourasseau, Cyril & Bouamama, Pr. Belkacem, 2017. "Low-temperature electrolysis system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 280-300.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Chunjun & Torres, José Luis Rueda & Zong, Yi & You, Shi & Jin, Xin, 2025. "A review of alkaline electrolyzer technology modeling and applications for decision-making optimization in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 224(C).
    2. Hu, Song & Guo, Bin & Ding, Shunliang & Yang, Fuyuan & Dang, Jian & Liu, Biao & Gu, Junjie & Ma, Jugang & Ouyang, Minggao, 2022. "A comprehensive review of alkaline water electrolysis mathematical modeling," Applied Energy, Elsevier, vol. 327(C).
    3. Qiu, Yiwei & Zhou, Buxiang & Zang, Tianlei & Zhou, Yi & Chen, Shi & Qi, Ruomei & Li, Jiarong & Lin, Jin, 2023. "Extended load flexibility of utility-scale P2H plants: Optimal production scheduling considering dynamic thermal and HTO impurity effects," Renewable Energy, Elsevier, vol. 217(C).
    4. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Cho, Hyun-Seok & Lee, Changsoo & Kim, MinJoong & Lee, Jay H., 2025. "The impact of degradation on the economics of green hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    5. Solanki, Bhanupratap Singh & Lim, Hoyoung & Yoon, Seok Jun & Ham, Hyung Chul & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2025. "Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    6. Zhao, Yaling & Zhao, Bin & Yao, Yanchen & Jia, Xiaohan & Peng, Xueyuan, 2024. "Experimental study and sensitivity analysis of performance for a hydrogen diaphragm compressor," Renewable Energy, Elsevier, vol. 237(PD).
    7. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    8. Burton, N.A. & Grant, J.C., 2025. "Increasing the efficiency of water electrolysis with the application of pulsing electric fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    9. Chen, Jingxian & Wang, Sen & Sun, Yongwen & Zhang, Cunman & Lv, Hong, 2025. "Multi-dimensional performance evaluation and energy analysis of proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 377(PB).
    10. Dasireddy, Venkata D.B.C. & Likozar, Blaž, 2022. "Cu–Mn–O nano-particle/nano-sheet spinel-type materials as catalysts in methanol steam reforming (MSR) and preferential oxidation (PROX) reaction for purified hydrogen production," Renewable Energy, Elsevier, vol. 182(C), pages 713-724.
    11. Cheng, Xiang & Lin, Jin & Zhang, Mingjun & Sha, Liandong & Yang, Bosen & Liu, Feng & Song, Yonghua, 2025. "Power controller design for electrolysis systems with DC/DC interface supporting fast dynamic operation: A model-based and experimental study," Applied Energy, Elsevier, vol. 378(PB).
    12. Zhong, Ziqiang & Ding, Yetian & Chen, Youxiao & Liao, Peng & Chen, Qian, 2025. "Improving commercial-scale alkaline water electrolysis systems for fluctuating renewable energy: Unsteady-state thermodynamic analysis and optimization," Applied Energy, Elsevier, vol. 395(C).
    13. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    14. Zhao, Meng-Jie & He, Qian & Xiang, Ting & Ya, Hua-Qin & Luo, Hao & Wan, Shanhong & Ding, Jun & He, Jian-Bo, 2023. "Automatic operation of decoupled water electrolysis based on bipolar electrode," Renewable Energy, Elsevier, vol. 203(C), pages 583-591.
    15. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    16. Xin, Yu & Xing, Xueli & Li, Xiang & Hong, Hui, 2024. "A biomass–solar hybrid gasification system by solar pyrolysis and PV– Solid oxide electrolysis cell for sustainable fuel production," Applied Energy, Elsevier, vol. 356(C).
    17. Yang, Rui & Mohamed, Amira & Kim, Kibum, 2023. "Optimal design and flow-field pattern selection of proton exchange membrane electrolyzers using artificial intelligence," Energy, Elsevier, vol. 264(C).
    18. Zhao, Yuyang & Zhao, Yuhuan & Cao, Song & Zhu, Zhengzheng & Sun, Hexu, 2025. "Capacity configuration and control optimization of off-grid wind solar hydrogen storage system," Energy, Elsevier, vol. 324(C).
    19. Qiu, Xiaoyan & Zhang, Hang & Qiu, Yiwei & Zhou, Yi & Zang, Tianlei & Zhou, Buxiang & Qi, Ruomei & Lin, Jin & Wang, Jiepeng, 2023. "Dynamic parameter estimation of the alkaline electrolysis system combining Bayesian inference and adaptive polynomial surrogate models," Applied Energy, Elsevier, vol. 348(C).
    20. Qingshan Tan & Ke Li & Longquan Zeng & Lu Xie & Man Cheng & Wei He, 2025. "A Multi-State Rotational Control Strategy for Hydrogen Production Systems Based on Hybrid Electrolyzers," Energies, MDPI, vol. 18(8), pages 1-17, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:394:y:2025:i:c:s030626192500916x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.