IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225016445.html
   My bibliography  Save this article

Capacity configuration and control optimization of off-grid wind solar hydrogen storage system

Author

Listed:
  • Zhao, Yuyang
  • Zhao, Yuhuan
  • Cao, Song
  • Zhu, Zhengzheng
  • Sun, Hexu

Abstract

The configuration and operational validation of wind solar hydrogen storage integrated systems are critical for achieving efficient energy utilization, ensuring economic viability, and maintaining system stability. This study proposed an off-grid multi-energy system capacity configuration and control optimization framework based on the Grey Wolf Optimization (GWO) algorithm, which enhances system revenue through an improved capacity allocation model. The results demonstrate the following: Firstly, the proposed system achieves a significant financial improvement, with an annual revenue increase of 33.79 % compared to a hydrogen production scheme relying solely on wind power without energy storage. Secondly, the adoption of a wind solar complementary hydrogen production approach increases the annual revenue of the system by 33.33 % compared to the single wind power hydrogen production scheme. Furthermore, a system operation control strategy based on the State of Charge (SOC) of lithium batteries is proposed. Using operational data from the Zhangjiakou Chongli wind solar complementary coupling hydrogen production project, the effectiveness of the proposed control strategy is validated, demonstrating its ability to ensure stable system operation. Results show that in wind and solar power excess scenarios, the SOC rises from 45.8 % to 49.8 %, and declines to 47.2 % when there's a power deficit, indicating its potential for peak shaving and valley filling, thereby mitigating fluctuations in wind and solar power output.

Suggested Citation

  • Zhao, Yuyang & Zhao, Yuhuan & Cao, Song & Zhu, Zhengzheng & Sun, Hexu, 2025. "Capacity configuration and control optimization of off-grid wind solar hydrogen storage system," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016445
    DOI: 10.1016/j.energy.2025.136002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225016445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    2. Zhang, Debao & Liu, Junwei & Jiao, Shifei & Tian, Hao & Lou, Chengzhi & Zhou, Zhihua & Zhang, Ji & Wang, Chendong & Zuo, Jian, 2019. "Research on the configuration and operation effect of the hybrid solar-wind-battery power generation system based on NSGA-II," Energy, Elsevier, vol. 189(C).
    3. Diouf, Boucar & Pode, Ramchandra, 2015. "Potential of lithium-ion batteries in renewable energy," Renewable Energy, Elsevier, vol. 76(C), pages 375-380.
    4. Frank Gambou & Damien Guilbert & Michel Zasadzinski & Hugues Rafaralahy, 2022. "A Comprehensive Survey of Alkaline Electrolyzer Modeling: Electrical Domain and Specific Electrolyte Conductivity," Energies, MDPI, vol. 15(9), pages 1-20, May.
    5. Berrueta, Alberto & Urtasun, Andoni & Ursúa, Alfredo & Sanchis, Pablo, 2018. "A comprehensive model for lithium-ion batteries: From the physical principles to an electrical model," Energy, Elsevier, vol. 144(C), pages 286-300.
    6. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2017. "Modelling and simulation of an alkaline electrolyser cell," Energy, Elsevier, vol. 138(C), pages 316-331.
    7. Dai, Shuangfeng & Mansouri, Seyed Amir & Huang, Shoujun & Alharthi, Yahya Z. & Wu, Yongfei & Bagherzadeh, Leila, 2024. "A multi-stage techno-economic model for harnessing flexibility from IoT-enabled appliances and smart charging systems: Developing a competitive local flexibility market using Stackelberg game theory," Applied Energy, Elsevier, vol. 373(C).
    8. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    9. Olis, Walker & Rosewater, David & Nguyen, Tu & Byrne, Raymond H., 2023. "Impact of heating and cooling loads on battery energy storage system sizing in extreme cold climates," Energy, Elsevier, vol. 278(PB).
    10. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    11. Kannaiyan, Kumaran & Lekshmi, G.S. & Ramakrishna, Seeram & Kang, Misook & Kumaravel, Vignesh, 2023. "Perspectives for the green hydrogen energy-based economy," Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    2. Wang, Jing & Kang, Lixia & Huang, Xiankun & Liu, Yongzhong, 2021. "An analysis framework for quantitative evaluation of parametric uncertainty in a cooperated energy storage system with multiple energy carriers," Energy, Elsevier, vol. 226(C).
    3. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Zheng, Yi & You, Shi & Bindner, Henrik W. & Münster, Marie, 2022. "Optimal day-ahead dispatch of an alkaline electrolyser system concerning thermal–electric properties and state-transitional dynamics," Applied Energy, Elsevier, vol. 307(C).
    5. José Pereira & Reinaldo Souza & Jeferson Oliveira & Ana Moita, 2024. "Hydrogen Production, Transporting and Storage Processes—A Brief Review," Clean Technol., MDPI, vol. 6(3), pages 1-54, September.
    6. Qichen Wang & Zhengmeng Hou & Yilin Guo & Liangchao Huang & Yanli Fang & Wei Sun & Yuhan Ge, 2023. "Enhancing Energy Transition through Sector Coupling: A Review of Technologies and Models," Energies, MDPI, vol. 16(13), pages 1-31, July.
    7. Huang, Danji & Xiong, Binyu & Fang, Jiakun & Hu, Kewei & Zhong, Zhiyao & Ying, Yuheng & Ai, Xiaomeng & Chen, Zhe, 2022. "A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell," Applied Energy, Elsevier, vol. 314(C).
    8. Hu, Song & Guo, Bin & Ding, Shunliang & Yang, Fuyuan & Dang, Jian & Liu, Biao & Gu, Junjie & Ma, Jugang & Ouyang, Minggao, 2022. "A comprehensive review of alkaline water electrolysis mathematical modeling," Applied Energy, Elsevier, vol. 327(C).
    9. Jeddizahed, Javad & Webley, Paul A. & Hughes, Thomas J., 2024. "Integrating alkaline electrolysis with oxyfuel combustion for hydrogen and electricity production," Applied Energy, Elsevier, vol. 361(C).
    10. Liang, Tao & Chen, Mengjing & Tan, Jianxin & Jing, Yanwei & Lv, Liangnian & Yang, Wenbo, 2024. "Large-scale off-grid wind power hydrogen production multi-tank combination operation law and scheduling strategy taking into account alkaline electrolyzer characteristics," Renewable Energy, Elsevier, vol. 232(C).
    11. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    12. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    13. Oliver Wagner & Thomas Adisorn & Lena Tholen & Dagmar Kiyar, 2020. "Surviving the Energy Transition: Development of a Proposal for Evaluating Sustainable Business Models for Incumbents in Germany’s Electricity Market," Energies, MDPI, vol. 13(3), pages 1-17, February.
    14. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    15. Engstam, Linus & Janke, Leandro & Sundberg, Cecilia & Nordberg, Åke, 2025. "Optimising power-to-gas integration with wastewater treatment and biogas: A techno-economic assessment of CO2 and by-product utilisation," Applied Energy, Elsevier, vol. 377(PB).
    16. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    17. Dhafer M. Dahis & Seyed Saeedallah Mortazavi & Mahmood Joorabian & Alireza Saffarian, 2025. "Bi-Level Resilience-Oriented Sitting and Sizing of Energy Hubs in Electrical, Thermal and Gas Networks Considering Energy Management System," Energies, MDPI, vol. 18(10), pages 1-26, May.
    18. Yang, Jie & Yu, Fan & Ma, Kai & Yang, Bo & Yue, Zhiyuan, 2024. "Optimal scheduling of electric-hydrogen integrated charging station for new energy vehicles," Renewable Energy, Elsevier, vol. 224(C).
    19. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    20. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.