IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925004660.html
   My bibliography  Save this article

Estimate state of charge in lithium-ion batteries with unknown data

Author

Listed:
  • Hu, Jingwei
  • Li, Xiaodong
  • Fang, Zheng
  • Cheng, Jun
  • Yi, Longqiang
  • Zhang, Zhihong

Abstract

Lithium-ion batteries (LIBs) are vital for sustainable energy solutions, with the state of charge (SOC) serving as a critical indicator of their energy levels, directly influencing safety and efficiency. However, accurately estimating SOC remains challenging due to complex internal chemical processes and factors such as unknown data distribution, error accumulation, delayed feedback, and sensitivity to input data. To tackle these challenges, we propose a physics-guided meta-learning framework for cross-task adaptation in SOC estimation. During the model adaptation phase, the challenge of acquiring the maximum capacity prevented the calculation of the SOC at the beginning of the discharge process, which is critical for adaptation or fine-tuning. This framework adapts quickly to new data distributions with the most similarly distributed data and learns adaptive strategies, enabling rapid model updates across various attributes, such as LIB types, temperatures, and operating conditions. Moreover, to further enhance the accuracy and generalization performance of the model, the Coulomb counting method is integrated into the network training process. The physical parameters utilized in Coulomb counting are provided and refined by the neural network, which also generates a separate estimate. Additionally, physical constraints are added to the loss function to guide the update of network parameters. This approach combines physical guidance with the estimation of neural network, thereby partially mitigating the errors inherent in the training process with similar data. We evaluated the estimation model through five-fold cross-validation on 56 datasets. The framework demonstrates strong generalization, achieving robust SOC estimation across varying capacities and conditions. Our work highlights the potential of meta-learning for fast adaptation in SOC estimation under unknown distributions and demonstrates the importance of physical information guidance in improving robustness and performance. This framework can be applied to a wide range of batteries, providing robust support for battery management systems (BMS).

Suggested Citation

  • Hu, Jingwei & Li, Xiaodong & Fang, Zheng & Cheng, Jun & Yi, Longqiang & Zhang, Zhihong, 2025. "Estimate state of charge in lithium-ion batteries with unknown data," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004660
    DOI: 10.1016/j.apenergy.2025.125736
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    2. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    3. Clare P. Grey & David S. Hall, 2020. "Prospects for lithium-ion batteries and beyond—a 2030 vision," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    4. Lin, Cheng & Tang, Aihua & Xing, Jilei, 2017. "Evaluation of electrochemical models based battery state-of-charge estimation approaches for electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 394-404.
    5. Richard Schmuch & Ralf Wagner & Gerhard Hörpel & Tobias Placke & Martin Winter, 2018. "Performance and cost of materials for lithium-based rechargeable automotive batteries," Nature Energy, Nature, vol. 3(4), pages 267-278, April.
    6. Jiahuan Lu & Rui Xiong & Jinpeng Tian & Chenxu Wang & Fengchun Sun, 2023. "Deep learning to estimate lithium-ion battery state of health without additional degradation experiments," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Li, Junfu & Wang, Lixin & Lyu, Chao & Pecht, Michael, 2017. "State of charge estimation based on a simplified electrochemical model for a single LiCoO2 battery and battery pack," Energy, Elsevier, vol. 133(C), pages 572-583.
    8. Ren, Xiaoqing & Liu, Shulin & Yu, Xiaodong & Dong, Xia, 2021. "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, Elsevier, vol. 234(C).
    9. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    10. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Bingyang & Zeng, Xingjie & Liu, Chao & Xu, Yafei & Cao, Heling, 2025. "Health management of power batteries in low temperatures based on Adaptive Transfer Enformer framework," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    2. Wang, Jianfeng & Zuo, Zhiwen & Wei, Yili & Jia, Yongkai & Chen, Bowei & Li, Yuhan & Yang, Na, 2024. "State of charge estimation of lithium-ion battery based on GA-LSTM and improved IAKF," Applied Energy, Elsevier, vol. 368(C).
    3. Fan, Guodong & Li, Xiaoyu & Zhang, Ruigang, 2021. "Global Sensitivity Analysis on Temperature-Dependent Parameters of A Reduced-Order Electrochemical Model And Robust State-of-Charge Estimation at Different Temperatures," Energy, Elsevier, vol. 223(C).
    4. Oyewole, Isaiah & Chehade, Abdallah & Kim, Youngki, 2022. "A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation," Applied Energy, Elsevier, vol. 312(C).
    5. Bian, Chong & Duan, Zhiyu & Hao, Yaqian & Yang, Shunkun & Feng, Junlan, 2024. "Exploring large language model for generic and robust state-of-charge estimation of Li-ion batteries: A mixed prompt learning method," Energy, Elsevier, vol. 302(C).
    6. Stefano Leonori & Luca Baldini & Antonello Rizzi & Fabio Massimo Frattale Mascioli, 2021. "A Physically Inspired Equivalent Neural Network Circuit Model for SoC Estimation of Electrochemical Cells," Energies, MDPI, vol. 14(21), pages 1-29, November.
    7. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    8. Yang, Jufeng & Huang, Wenxin & Xia, Bing & Mi, Chris, 2019. "The improved open-circuit voltage characterization test using active polarization voltage reduction method," Applied Energy, Elsevier, vol. 237(C), pages 682-694.
    9. Ahmed, Mostafa Shaban & Raihan, Sheikh Arif & Balasingam, Balakumar, 2020. "A scaling approach for improved state of charge representation in rechargeable batteries," Applied Energy, Elsevier, vol. 267(C).
    10. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    11. Bizhong Xia & Zheng Zhang & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "Strong Tracking of a H-Infinity Filter in Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 11(6), pages 1-20, June.
    12. Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
    13. Zhang, Kai & Bai, Dongxin & Li, Yong & Song, Ke & Zheng, Bailin & Yang, Fuqian, 2024. "Robust state-of-charge estimator for lithium-ion batteries enabled by a physics-driven dual-stage attention mechanism," Applied Energy, Elsevier, vol. 359(C).
    14. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    15. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    16. Wan, Sicheng & Yang, Haojing & Lin, Jinwen & Li, Junhui & Wang, Yibo & Chen, Xinman, 2024. "Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM," Energy, Elsevier, vol. 310(C).
    17. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    18. Li, Zongxiang & Li, Liwei & Chen, Jing & Wang, Dongqing, 2024. "A multi-head attention mechanism aided hybrid network for identifying batteries’ state of charge," Energy, Elsevier, vol. 286(C).
    19. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    20. Wenhui Zheng & Bizhong Xia & Wei Wang & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2019. "State of Charge Estimation for Power Lithium-Ion Battery Using a Fuzzy Logic Sliding Mode Observer," Energies, MDPI, vol. 12(13), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.