IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v384y2025ics0306261925001771.html
   My bibliography  Save this article

Investigation of the electrochemical performance in alkaline water electrolysis cells based on a 3D multiphysics model: Effect of flow field and electric field

Author

Listed:
  • Feng, Zuhao
  • Zheng, Longyun
  • Wang, Guangchao
  • Guo, Kai
  • Liu, Chunjiang

Abstract

Alkaline water electrolysis (AWE) is a promising technology for the industrial production of green hydrogen. However, in the AWE cell, the influence of gas–fluid two–phase flow and electron conduction on the electrochemical performance has not been revealed clearly. In this study, the flow field and the electric field inside a zero-gap AWE cell operated at high pressure are simulated using a 3D multiphysics numerical model. The maximum deviation between the simulated and measured voltage is only 0.18 %. Then, the electrochemical performance of the AWE cell with a mesh flow field is analyzed from the perspective of gas removal and electron conduction. The results show that the conductive column exhibits a negative effect on gas removal at a low inlet velocity, and the fluid distribution effect of the conductive column becomes apparent as the inlet velocity increases. Furthermore, the effect of the tangential velocity and the normal velocity of the electrolyte on the gas removal is considered separately. Moreover, the ohmic loss caused by electron conduction is also found to be responsible for the performance degradation of an AWE cell. This study provides a new perspective on the effect of the flow field on cell performance and justifies the importance of electron conduction on electrochemical performance.

Suggested Citation

  • Feng, Zuhao & Zheng, Longyun & Wang, Guangchao & Guo, Kai & Liu, Chunjiang, 2025. "Investigation of the electrochemical performance in alkaline water electrolysis cells based on a 3D multiphysics model: Effect of flow field and electric field," Applied Energy, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001771
    DOI: 10.1016/j.apenergy.2025.125447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Alam, Afroz & Park, Chungi & Lee, Jaeseung & Ju, Hyunchul, 2020. "Comparative analysis of performance of alkaline water electrolyzer by using porous separator and ion-solvating polybenzimidazole membrane," Renewable Energy, Elsevier, vol. 166(C), pages 222-233.
    2. El-Askary, W.A. & Sakr, I.M. & Ibrahim, K.A. & Balabel, A., 2015. "Hydrodynamics characteristics of hydrogen evolution process through electrolysis: Numerical and experimental studies," Energy, Elsevier, vol. 90(P1), pages 722-737.
    3. Jang, Dohyung & Cho, Hyun-Seok & Kang, Sanggyu, 2021. "Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system," Applied Energy, Elsevier, vol. 287(C).
    4. Huang, Danji & Xiong, Binyu & Fang, Jiakun & Hu, Kewei & Zhong, Zhiyao & Ying, Yuheng & Ai, Xiaomeng & Chen, Zhe, 2022. "A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell," Applied Energy, Elsevier, vol. 314(C).
    5. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
    6. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    7. Hou, Falin & Shen, Chenhui & Cheng, Qing, 2022. "Research on a new optimization method for airflow organization in breeding air conditioning with perforated ceiling ventilation," Energy, Elsevier, vol. 254(PB).
    8. Hu, Song & Guo, Bin & Ding, Shunliang & Yang, Fuyuan & Dang, Jian & Liu, Biao & Gu, Junjie & Ma, Jugang & Ouyang, Minggao, 2022. "A comprehensive review of alkaline water electrolysis mathematical modeling," Applied Energy, Elsevier, vol. 327(C).
    9. Kai Ling Zhou & Zelin Wang & Chang Bao Han & Xiaoxing Ke & Changhao Wang & Yuhong Jin & Qianqian Zhang & Jingbing Liu & Hao Wang & Hui Yan, 2021. "Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Zhanwu Lei & Wenbin Cai & Yifei Rao & Kuan Wang & Yuyuan Jiang & Yang Liu & Xu Jin & Jianming Li & Zhengxing Lv & Shuhong Jiao & Wenhua Zhang & Pengfei Yan & Shuo Zhang & Ruiguo Cao, 2022. "Coordination modulation of iridium single-atom catalyst maximizing water oxidation activity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakas, Georgios & Ibáñez-Rioja, Alejandro & Pöyhönen, Santeri & Järvinen, Lauri & Kosonen, Antti & Ruuskanen, Vesa & Kauranen, Pertti & Ahola, Jero, 2024. "Sensitivity analysis of the process conditions affecting the shunt currents and the SEC in an industrial-scale alkaline water electrolyzer plant," Applied Energy, Elsevier, vol. 359(C).
    2. Qiu, Xiaoyan & Zhang, Hang & Qiu, Yiwei & Zhou, Yi & Zang, Tianlei & Zhou, Buxiang & Qi, Ruomei & Lin, Jin & Wang, Jiepeng, 2023. "Dynamic parameter estimation of the alkaline electrolysis system combining Bayesian inference and adaptive polynomial surrogate models," Applied Energy, Elsevier, vol. 348(C).
    3. Siran Xu & Sihua Feng & Yue Yu & Dongping Xue & Mengli Liu & Chao Wang & Kaiyue Zhao & Bingjun Xu & Jia-Nan Zhang, 2024. "Dual-site segmentally synergistic catalysis mechanism: boosting CoFeSx nanocluster for sustainable water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Yi-Chong Jiang & Shi-Meng Dong & Zheng Liang & Xiao-Li Wang & Lei Shi & Bing Yan & Tian Zhao, 2024. "Holistic Dynamic Modeling and Simulation of Alkaline Water Electrolysis Systems Based on Heat Current Method," Energies, MDPI, vol. 17(23), pages 1-24, December.
    5. Sang Eon Jun & Youn-Hye Kim & Jaehyun Kim & Woo Seok Cheon & Sungkyun Choi & Jinwook Yang & Hoonkee Park & Hyungsoo Lee & Sun Hwa Park & Ki Chang Kwon & Jooho Moon & Soo-Hyun Kim & Ho Won Jang, 2023. "Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Yue Zhang & Xueqin Mu & Zhengyang Liu & Hongyu Zhao & Zechao Zhuang & Yifan Zhang & Shichun Mu & Suli Liu & Dingsheng Wang & Zhihui Dai, 2024. "Twin-distortion modulated ultra-low coordination PtRuNi-Ox catalyst for enhanced hydrogen production from chemical wastewater," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Fengyi Shen & Zhihao Zhang & Zhe Wang & Hao Ren & Xinhu Liang & Zengjian Cai & Shitu Yang & Guodong Sun & Yanan Cao & Xiaoxin Yang & Mingzhen Hu & Zhengping Hao & Kebin Zhou, 2024. "Oxophilic Ce single atoms-triggered active sites reverse for superior alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Pöyhönen, Santeri & Ibáñez-Rioja, Alejandro & Sakas, Georgios & Kosonen, Antti & Ruuskanen, Vesa & Kauranen, Pertti & Ahola, Jero & Kiilavuo, Jukka & Krimer, Anton, 2025. "Dynamic mass- and energy-balance simulation model of an industrial-scale atmospheric alkaline water electrolyzer," Energy, Elsevier, vol. 322(C).
    9. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    10. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    12. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    13. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    14. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    15. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    17. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    18. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    19. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    20. Ewa C. E. Rönnebro & Greg Whyatt & Michael Powell & Matthew Westman & Feng (Richard) Zheng & Zhigang Zak Fang, 2015. "Metal Hydrides for High-Temperature Power Generation," Energies, MDPI, vol. 8(8), pages 1-25, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.