IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261925000844.html
   My bibliography  Save this article

Advancements in hydrogen production through the integration of renewable energy sources with AI techniques: A comprehensive literature review

Author

Listed:
  • Baseer, Mohammad Abdul
  • Kumar, Prashant
  • Nascimento, Erick Giovani Sperandio

Abstract

Hydrogen possesses the ability to produce energy with minimal greenhouse gas emissions when sustainably produced, making it a promising renewable energy carrier. Moreover, recent advancements in Artificial Intelligence (AI) can further enhance cleaner hydrogen production in a more optimised way. The main objective of this review paper is to comprehensively examine the current state-of-the-art in the integration of AI techniques with Renewable Energy Sources (RES), such as biomass, solar, algae power, geothermal, and wind to advance various hydrogen production methods, including electrolysis, biological, and photovoltaic processes. Furthermore, we aim to explore how AI optimisation can enhance sustainability, reliability, and commercial viability of Green Hydrogen (GH2) systems. These processes are crucial for reducing greenhouse gas emissions and meet the world's growing energy needs. The integration of RES with hydrogen production technologies has been recognised as a key strategy to attain a sustainable and environmentally friendly energy future, and the incorporation of AI can optimise efficiency and cost-effectiveness. This review found that there is a growing interest in the development of AI techniques to optimise GH2 production. While most of the studies focus on utilising wind and solar energy sources, this review found minimal existing research applying AI to GH2 production from algae, ocean, intermittency, and hybrid RES. Moreover, no works exploring AI to optimise GH2 production from sources like tidal and hydropower were found. Thus, prioritising AI-enabled system development to integrate and optimise these resources for GH2 production can help progress renewable generation capabilities towards a more sustainable, cleaner, carbon-free future for industry, transport, and societal sectors. Further extensive research is essential to fully harness the promise of AI in transforming diverse RES for clean hydrogen.

Suggested Citation

  • Baseer, Mohammad Abdul & Kumar, Prashant & Nascimento, Erick Giovani Sperandio, 2025. "Advancements in hydrogen production through the integration of renewable energy sources with AI techniques: A comprehensive literature review," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000844
    DOI: 10.1016/j.apenergy.2025.125354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925000844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salari, Ali & Shakibi, Hamid & Soleimanzade, Mohammad Amin & Sadrzadeh, Mohtada & Hakkaki-Fard, Ali, 2024. "Application of machine learning in evaluating and optimizing the hydrogen production performance of a solar-based electrolyzer system," Renewable Energy, Elsevier, vol. 220(C).
    2. Ali Javaid & Umer Javaid & Muhammad Sajid & Muhammad Rashid & Emad Uddin & Yasar Ayaz & Adeel Waqas, 2022. "Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning," Energies, MDPI, vol. 15(23), pages 1-13, November.
    3. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    4. Kargbo, Hannah O. & Zhang, Jie & Phan, Anh N., 2021. "Optimisation of two-stage biomass gasification for hydrogen production via artificial neural network," Applied Energy, Elsevier, vol. 302(C).
    5. Balali, Adel & Asadabadi, Mohammad Javad Raji & Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Moghimi, Mahdi, 2023. "Development and neural network optimization of a renewable-based system for hydrogen production and desalination," Renewable Energy, Elsevier, vol. 218(C).
    6. Agnieszka Dudziak & Arkadiusz Małek & Andrzej Marciniak & Jacek Caban & Jarosław Seńko, 2024. "Probabilistic Analysis of Green Hydrogen Production from a Mix of Solar and Wind Energy," Energies, MDPI, vol. 17(17), pages 1-22, September.
    7. Cheng, Guishi & Luo, Ercheng & Zhao, Ying & Yang, Yihao & Chen, Binbin & Cai, Youcheng & Wang, Xiaoqiang & Dong, Changqing, 2023. "Analysis and prediction of green hydrogen production potential by photovoltaic-powered water electrolysis using machine learning in China," Energy, Elsevier, vol. 284(C).
    8. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    9. Mir Sayed Shah Danish & Tomonobu Senjyu, 2023. "AI-Enabled Energy Policy for a Sustainable Future," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
    10. Mojgan Fayyazi & Paramjotsingh Sardar & Sumit Infent Thomas & Roonak Daghigh & Ali Jamali & Thomas Esch & Hans Kemper & Reza Langari & Hamid Khayyam, 2023. "Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles," Sustainability, MDPI, vol. 15(6), pages 1-38, March.
    11. Montero-Sousa, Juan Aurelio & Aláiz-Moretón, Héctor & Quintián, Héctor & González-Ayuso, Tomás & Novais, Paulo & Calvo-Rolle, José Luis, 2020. "Hydrogen consumption prediction of a fuel cell based system with a hybrid intelligent approach," Energy, Elsevier, vol. 205(C).
    12. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Abdullah G. Alharbi & Sulaiman Alshammari & Yahia B. Hassan, 2023. "Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    13. Arturs Nikulins & Kaspars Sudars & Edgars Edelmers & Ivars Namatevs & Kaspars Ozols & Vitalijs Komasilovs & Aleksejs Zacepins & Armands Kviesis & Andreas Reinhardt, 2024. "Deep Learning for Wind and Solar Energy Forecasting in Hydrogen Production," Energies, MDPI, vol. 17(5), pages 1-12, February.
    14. Fatemehsadat Mirshafiee & Emad Shahbazi & Mohadeseh Safi & Rituraj Rituraj, 2023. "Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study," Energies, MDPI, vol. 16(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalifeh Soltani, Sayed Rashid & Mostafaeipour, Ali & Mishra, Phoolendra & Alidoost, Sara & Jahangiri, Mehdi & Abrisham Kar, Mohammad, 2025. "Green hydrogen production and prediction using floating photovoltaic panels on wastewater ponds," Renewable Energy, Elsevier, vol. 243(C).
    2. Ayiguzhali Tuluhong & Qingpu Chang & Lirong Xie & Zhisen Xu & Tengfei Song, 2024. "Current Status of Green Hydrogen Production Technology: A Review," Sustainability, MDPI, vol. 16(20), pages 1-47, October.
    3. Leal, Jairon Isaias & Pitombeira-Neto, Anselmo Ramalho & Bueno, André Valente & Costa Rocha, Paulo Alexandre & de Andrade, Carla Freitas, 2025. "Probabilistic wind speed forecasting via Bayesian DLMs and its application in green hydrogen production," Applied Energy, Elsevier, vol. 382(C).
    4. Mazzeo, Domenico & Herdem, Münür Sacit & Matera, Nicoletta & Bonini, Matteo & Wen, John Z. & Nathwani, Jatin & Oliveti, Giuseppe, 2021. "Artificial intelligence application for the performance prediction of a clean energy community," Energy, Elsevier, vol. 232(C).
    5. Jimmy Gallegos & Paul Arévalo & Christian Montaleza & Francisco Jurado, 2024. "Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review," Sustainability, MDPI, vol. 16(2), pages 1-33, January.
    6. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    7. Guangying Jin & Wei Feng & Qingpu Meng, 2022. "Prediction of Waterway Cargo Transportation Volume to Support Maritime Transportation Systems Based on GA-BP Neural Network Optimization," Sustainability, MDPI, vol. 14(21), pages 1-24, October.
    8. Adamczyk, Wojciech & Myöhänen, Kari & Klajny, Marcin & Kettunen, Ari & Klimanek, Adam & Ryfa, Arkadiusz & Białecki, Ryszard & Sładek, Sławomir & Zdeb, Janusz & Budnik, Michał & Peczkis, Grzegorz & Prz, 2024. "Development and demonstration of advanced predictive and prescriptive algorithms to control industrial installation," Energy, Elsevier, vol. 313(C).
    9. Wang, Bo & Wang, Jianda & Dong, Kangyin & Nepal, Rabindra, 2024. "How does artificial intelligence affect high-quality energy development? Achieving a clean energy transition society," Energy Policy, Elsevier, vol. 186(C).
    10. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    11. Wang, Zhe & Cao, Menglong & Tang, Haobo & Ji, Yulong & Han, Fenghui, 2024. "A global heat flow topology for revealing the synergistic effects of heat transfer and thermal power conversion in large scale systems: Methodology and case study," Energy, Elsevier, vol. 290(C).
    12. Liu, Ling & Wang, Jujie & Li, Jianping & Wei, Lu, 2023. "An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update," Applied Energy, Elsevier, vol. 340(C).
    13. Yang, Weifei & Xiao, Changlai & Zhang, Zhihao & Liang, Xiujuan, 2022. "Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network," Renewable Energy, Elsevier, vol. 182(C), pages 32-42.
    14. Stancu Stelian & Pernici Andreea, 2023. "Assessing the Evolution of the Energy Mix Worldwide, with a Focus on the Renewable Energy Transition," Management & Marketing, Sciendo, vol. 18(s1), pages 384-397, December.
    15. Sameer Al-Dahidi & Piero Baraldi & Enrico Zio & Lorenzo Montelatici, 2021. "Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    16. Sagir, Emrah & Alipour, Siamak, 2021. "Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Yang, Mao & Jiang, Yue & Zhang, Wei & Li, Yi & Su, Xin, 2024. "Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints," Renewable Energy, Elsevier, vol. 237(PC).
    18. Tolga Yalçin & Pol Paradell Solà & Paschalia Stefanidou-Voziki & Jose Luis Domínguez-García & Tugce Demirdelen, 2023. "Exploiting Digitalization of Solar PV Plants Using Machine Learning: Digital Twin Concept for Operation," Energies, MDPI, vol. 16(13), pages 1-17, June.
    19. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    20. Wang, Hao & Hu, Enyi & Zhu, Bin & Yang, Fan & Lund, Peter, 2025. "H2 treatment benefit stable operation for ceramic fuel cells with NFMNa electrolyte at lower temperature," Renewable Energy, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.