Deep Learning for Wind and Solar Energy Forecasting in Hydrogen Production
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Li, Yang & Wang, Ruinong & Li, Yuanzheng & Zhang, Meng & Long, Chao, 2023. "Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach," Applied Energy, Elsevier, vol. 329(C).
- Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
- Ghadah Alkhayat & Syed Hamid Hasan & Rashid Mehmood, 2022. "SENERGY: A Novel Deep Learning-Based Auto-Selective Approach and Tool for Solar Energy Forecasting," Energies, MDPI, vol. 15(18), pages 1-55, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bozzolo Lueckel, Fabio B. & Monaghan, Rory F.D. & Lynch, Muireann Á., 2025. "Hydrogen supply chain modelling at energy system scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
- Ling Miao & Ning Zhou & Jianwei Ma & Hao Liu & Jian Zhao & Xiaozhao Wei & Jingyuan Yin, 2025. "Current Status, Challenges and Future Perspectives of Operation Optimization, Power Prediction and Virtual Synchronous Generator of Microgrids: A Comprehensive Review," Energies, MDPI, vol. 18(13), pages 1-41, July.
- Baseer, Mohammad Abdul & Kumar, Prashant & Nascimento, Erick Giovani Sperandio, 2025. "Advancements in hydrogen production through the integration of renewable energy sources with AI techniques: A comprehensive literature review," Applied Energy, Elsevier, vol. 383(C).
- Dariusz Bradło & Witold Żukowski & Jan Porzuczek & Małgorzata Olek & Gabriela Berkowicz-Płatek, 2025. "Towards Net Zero in Poland: A Novel Approach to Power Grid Balance with Centralized Hydrogen Production Units," Energies, MDPI, vol. 18(7), pages 1-24, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
- Li, Yanbin & Hu, Weikun & Zhang, Feng & Li, Yun, 2025. "Multi-objective collaborative operation optimization of park-level integrated energy system clusters considering green power forecasting and trading," Energy, Elsevier, vol. 319(C).
- Zhao, Xiaoyu & Duan, Pengfei & Cao, Xiaodong & Xue, Qingwen & Zhao, Bingxu & Hu, Jinxue & Zhang, Chenyang & Yuan, Xiaoyang, 2025. "A probabilistic load forecasting method for multi-energy loads based on inflection point optimization and integrated feature screening," Energy, Elsevier, vol. 327(C).
- Jian Zhu & Zhiyuan Zhao & Xiaoran Zheng & Zhao An & Qingwu Guo & Zhikai Li & Jianling Sun & Yuanjun Guo, 2023. "Time-Series Power Forecasting for Wind and Solar Energy Based on the SL-Transformer," Energies, MDPI, vol. 16(22), pages 1-15, November.
- Jin, Huaiping & Zhang, Kehao & Fan, Shouyuan & Jin, Huaikang & Wang, Bin, 2024. "Wind power forecasting based on ensemble deep learning with surrogate-assisted evolutionary neural architecture search and many-objective federated learning," Energy, Elsevier, vol. 308(C).
- Runge, Jason & Saloux, Etienne, 2023. "A comparison of prediction and forecasting artificial intelligence models to estimate the future energy demand in a district heating system," Energy, Elsevier, vol. 269(C).
- Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
- Xu, Wen & Wu, Xianguo & Xiong, Shishu & Li, Tiejun & Liu, Yang, 2025. "Optimizing the sustainable performance of public buildings: A hybrid machine learning algorithm," Energy, Elsevier, vol. 320(C).
- Zhang, Le & Zhu, Jizhong & Zhang, Di & Liu, Yun, 2023. "An incremental photovoltaic power prediction method considering concept drift and privacy protection," Applied Energy, Elsevier, vol. 351(C).
- Katarzyna Poczeta & Elpiniki I. Papageorgiou, 2022. "Energy Use Forecasting with the Use of a Nested Structure Based on Fuzzy Cognitive Maps and Artificial Neural Networks," Energies, MDPI, vol. 15(20), pages 1-18, October.
- Abdoos, Ali Akbar & Abdoos, Hatef & Kazemitabar, Javad & Mobashsher, Mohammad Mehdi & Khaloo, Hooman, 2023. "An intelligent hybrid method based on Monte Carlo simulation for short-term probabilistic wind power prediction," Energy, Elsevier, vol. 278(PA).
- Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Wu, Zhiyuan & Fang, Guohua & Ye, Jian & Zhu, David Z. & Huang, Xianfeng, 2025. "A reinforcement learning-based ensemble forecasting framework for renewable energy forecasting," Renewable Energy, Elsevier, vol. 244(C).
- Wassila Tercha & Sid Ahmed Tadjer & Fathia Chekired & Laurent Canale, 2024. "Machine Learning-Based Forecasting of Temperature and Solar Irradiance for Photovoltaic Systems," Energies, MDPI, vol. 17(5), pages 1-20, February.
- Shokouhyar, Sajjad & Ahmadi, Sadra & Ashrafzadeh, Mahdi, 2021. "Promoting a novel method for warranty claim prediction based on social network data," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).
- Vidal, João V. & Fonte, Tiago M.S.L. & Lopes, Luis Seabra & Bernardo, Rodrigo M.C. & Carneiro, Pedro M.R. & Pires, Diogo G. & Soares dos Santos, Marco P., 2024. "Prediction of dynamic behaviors of vibrational-powered electromagnetic generators: Synergies between analytical and artificial intelligence modelling," Applied Energy, Elsevier, vol. 376(PB).
- Shangfu Wei & Xiaoqing Bai, 2022. "Multi-Step Short-Term Building Energy Consumption Forecasting Based on Singular Spectrum Analysis and Hybrid Neural Network," Energies, MDPI, vol. 15(5), pages 1-21, February.
- Te Li & Mengze Zhang & Yan Zhou, 2024. "LTPNet Integration of Deep Learning and Environmental Decision Support Systems for Renewable Energy Demand Forecasting," Papers 2410.15286, arXiv.org.
- Abou Houran, Mohamad & Salman Bukhari, Syed M. & Zafar, Muhammad Hamza & Mansoor, Majad & Chen, Wenjie, 2023. "COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications," Applied Energy, Elsevier, vol. 349(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1053-:d:1344387. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.