IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261924026175.html
   My bibliography  Save this article

User-perceptional privacy protection in NILM: A differential privacy approach

Author

Listed:
  • Zhang, Jiahao
  • Lu, Chenbei
  • Yi, Hongyu
  • Wu, Chenye

Abstract

This paper presents an approach to achieving user-perceptional privacy protection in Non-Intrusive Load Monitoring (NILM) datasets within the Differential Privacy (DP) framework. Our method is tailored to align privacy protection with genuine user expectations while simultaneously ensuring data authenticity and utility for downstream tasks dependent on pattern recognition. Specifically, based on DP, our privacy-preserving mechanism protects sensitive and critical user behaviors of appliance usage—namely, appliance start times, usage durations, and power levels. Based on user preferences, our mechanism allows for the flexible allocation of privacy budgets to these behaviors, offering customizable privacy protection. As protecting privacy harms data authenticity and utility for pattern recognition tasks, to solve this problem, we first utilize probability mass functions (pmfs) of user behaviors to effectively characterize appliance usage patterns. Then, our post-processing optimization utilizes a network flow framework to align the pmf of privacy-preserving behaviors closely with that of real behaviors. This alignment guarantees the authenticity and utility of appliance usage patterns in privacy-preserving data, ensuring that our privacy-preserving measures do not compromise the data’s accuracy and usefulness for analysis. To manage the significant computational burden of the network flow, we utilize the inherent sparsity of pmfs to reduce computational complexity, thereby enhancing the efficiency of our approach. Our approach allows users to prioritize the privacy of specific behaviors, demonstrating the method’s flexibility, efficiency, and applicability in real-world scenarios. Numerical validations reveal our method’s superiority in privacy preservation, data utility, and computational efficiency. Ultimately, this work underscores the importance of a user-centric approach to privacy that aligns with authentic user concerns and needs.

Suggested Citation

  • Zhang, Jiahao & Lu, Chenbei & Yi, Hongyu & Wu, Chenye, 2025. "User-perceptional privacy protection in NILM: A differential privacy approach," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924026175
    DOI: 10.1016/j.apenergy.2024.125233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924026175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yu & Liu, Wei & Shen, Yiwen & Zhao, Xin & Gao, Shan, 2021. "Toward smart energy user: Real time non-intrusive load monitoring with simultaneous switching operations," Applied Energy, Elsevier, vol. 287(C).
    2. Dai, Shuang & Meng, Fanlin & Wang, Qian & Chen, Xizhong, 2024. "DP2-NILM: A distributed and privacy-preserving framework for non-intrusive load monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Brucke, Karoline & Arens, Stefan & Telle, Jan-Simon & Steens, Thomas & Hanke, Benedikt & von Maydell, Karsten & Agert, Carsten, 2021. "A non-intrusive load monitoring approach for very short-term power predictions in commercial buildings," Applied Energy, Elsevier, vol. 292(C).
    4. Stephen Makonin & Z. Jane Wang & Chris Tumpach, 2018. "RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter Data Analysis," Data, MDPI, vol. 3(1), pages 1-9, February.
    5. Yu, Heyang & Zhang, Jingchen & Ma, Junchao & Chen, Changyu & Geng, Guangchao & Jiang, Quanyuan, 2023. "Privacy-preserving demand response of aggregated residential load," Applied Energy, Elsevier, vol. 339(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garcia-Marrero, L.E. & Monmasson, E. & Petrone, G., 2025. "Online real-time robust framework for non-intrusive load monitoring in constrained edge devices," Applied Energy, Elsevier, vol. 378(PA).
    2. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    3. Yin, Linfei & Wang, Nannan & Li, Jishen, 2025. "Electricity terminal multi-label recognition with a “one-versus-all” rejection recognition algorithm based on adaptive distillation increment learning and attention MobileNetV2 network for non-invasiv," Applied Energy, Elsevier, vol. 382(C).
    4. Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).
    5. Muchun Wan & Heyang Yu & Yingning Huo & Kan Yu & Quanyuan Jiang & Guangchao Geng, 2024. "Feasibility and Challenges for Vehicle-to-Grid in Electricity Market: A Review," Energies, MDPI, vol. 17(3), pages 1-23, January.
    6. Luan, Wenpeng & Wei, Zun & Liu, Bo & Yu, Yixin, 2022. "Non-intrusive power waveform modeling and identification of air conditioning load," Applied Energy, Elsevier, vol. 324(C).
    7. Liu, Yu & Liu, Congxiao & Ling, Qicheng & Zhao, Xin & Gao, Shan & Huang, Xueliang, 2021. "Toward smart distributed renewable generation via multi-uncertainty featured non-intrusive interactive energy monitoring," Applied Energy, Elsevier, vol. 303(C).
    8. Altaf Hussain & Muhammad Aleem, 2018. "GoCJ: Google Cloud Jobs Dataset for Distributed and Cloud Computing Infrastructures," Data, MDPI, vol. 3(4), pages 1-12, September.
    9. Fernanda Spada Villar & Pedro Henrique Juliano Nardelli & Arun Narayanan & Renan Cipriano Moioli & Hader Azzini & Luiz Carlos Pereira da Silva, 2021. "Noninvasive Detection of Appliance Utilization Patterns in Residential Electricity Demand," Energies, MDPI, vol. 14(6), pages 1-23, March.
    10. Li, Li & Fan, Shuai & Xiao, Jucheng & Zhou, Huan & Shen, Yu & He, Guangyu, 2024. "Fair trading strategy in multi-energy systems considering design optimization and demand response based on consumer psychology," Energy, Elsevier, vol. 306(C).
    11. Kan Yu & Qiang Wei & Chuanzi Xu & Xinyu Xiang & Heyang Yu, 2024. "Distributed Low-Carbon Energy Management of Urban Campus for Renewable Energy Consumption," Energies, MDPI, vol. 17(23), pages 1-14, December.
    12. Tan Ngoc Dinh & Gokul Sidarth Thirunavukkarasu & Mehdi Seyedmahmoudian & Saad Mekhilef & Alex Stojcevski, 2023. "Energy Consumption Forecasting in Commercial Buildings during the COVID-19 Pandemic: A Multivariate Multilayered Long-Short Term Memory Time-Series Model with Knowledge Injection," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    13. Yan, Haoran & Hou, Hongjuan & Deng, Min & Si, Lengge & Wang, Xi & Hu, Eric & Zhou, Rhonin, 2024. "Stackelberg game theory based model to guide users’ energy use behavior, with the consideration of flexible resources and consumer psychology, for an integrated energy system," Energy, Elsevier, vol. 288(C).
    14. Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
    15. Yang, Wangwang & Shi, Jing & Li, Shujian & Song, Zhaofang & Zhang, Zitong & Chen, Zexu, 2022. "A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior," Applied Energy, Elsevier, vol. 307(C).
    16. Li, Chuyi & Zheng, Kedi & Guo, Hongye & Chen, Qixin, 2023. "A mixed-integer programming approach for industrial non-intrusive load monitoring," Applied Energy, Elsevier, vol. 330(PA).
    17. Yan, Yi & Liu, Mingqi & Tian, Chongyi & Li, Ji & Li, Ke, 2024. "Multi-layer game theory based operation optimisation of ICES considering improved independent market participant models and dedicated distributed algorithms," Applied Energy, Elsevier, vol. 373(C).
    18. Lucas Pereira, 2019. "NILMPEds: A Performance Evaluation Dataset for Event Detection Algorithms in Non-Intrusive Load Monitoring," Data, MDPI, vol. 4(3), pages 1-9, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924026175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.