Lithium-ion battery degradation modelling using universal differential equations: Development of a cost-effective parameterisation methodology
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.125221
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Josefine D. McBrayer & Marco-Tulio F. Rodrigues & Maxwell C. Schulze & Daniel P. Abraham & Christopher A. Apblett & Ira Bloom & Gerard Michael Carroll & Andrew M. Colclasure & Chen Fang & Katharine L., 2021. "Calendar aging of silicon-containing batteries," Nature Energy, Nature, vol. 6(9), pages 866-872, September.
- Paul Stapor & Leonard Schmiester & Christoph Wierling & Simon Merkt & Dilan Pathirana & Bodo M. H. Lange & Daniel Weindl & Jan Hasenauer, 2022. "Mini-batch optimization enables training of ODE models on large-scale datasets," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Kuzhiyil, Jishnu Ayyangatu & Damoulas, Theodoros & Widanage, W. Dhammika, 2024. "Neural equivalent circuit models: Universal differential equations for battery modelling," Applied Energy, Elsevier, vol. 371(C).
- Liu, Kailong & Ashwin, T.R. & Hu, Xiaosong & Lucu, Mattin & Widanage, W. Dhammika, 2020. "An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rakshith Subramanya & Matti Yli-Ojanperä & Seppo Sierla & Taneli Hölttä & Jori Valtakari & Valeriy Vyatkin, 2021. "A Virtual Power Plant Solution for Aggregating Photovoltaic Systems and Other Distributed Energy Resources for Northern European Primary Frequency Reserves," Energies, MDPI, vol. 14(5), pages 1-23, February.
- Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
- S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
- Li, Penghua & Zhang, Zijian & Grosu, Radu & Deng, Zhongwei & Hou, Jie & Rong, Yujun & Wu, Rui, 2022. "An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Xing, W.W. & Zhang, Z. & Shah, A.A., 2025. "Enhanced Gaussian process dynamical modeling for battery health status forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
- Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
- Kuzhiyil, Jishnu Ayyangatu & Damoulas, Theodoros & Widanage, W. Dhammika, 2024. "Neural equivalent circuit models: Universal differential equations for battery modelling," Applied Energy, Elsevier, vol. 371(C).
- Jiaxing He & Youzhi Deng & Junwei Han & Tianze Xu & Jiangshan Qi & Jinghong Li & Yibo Zhang & Ziyun Zhao & Qi Li & Jing Xiao & Jun Zhang & Debin Kong & Wei Wei & Shichao Wu & Quan-Hong Yang, 2025. "Sieving pore design enables stable and fast alloying chemistry of silicon negative electrodes in Li-ion batteries," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Di Prima, Piera & Dessantis, Davide & Versaci, Daniele & Amici, Julia & Bodoardo, Silvia & Santarelli, Massimo, 2025. "Understanding calendar aging degradation in cylindrical lithium-ion cell: A novel pseudo-4-dimensional electrochemical-thermal model," Applied Energy, Elsevier, vol. 377(PC).
- Liu, Wei & Teh, Jiashen & Alharbi, Bader, 2025. "An asynchronous electro-thermal coupling modeling method of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 324(C).
- Amiri, Mahshid N. & Håkansson, Anne & Burheim, Odne S. & Lamb, Jacob J., 2024. "Lithium-ion battery digitalization: Combining physics-based models and machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
- Burke, Andrew F. & Zhao, Jingyuan, 2025. "Advanced Battery Technologies: Bus, Heavy-Duty Vocational Truck, and Construction Machinery Applications," Institute of Transportation Studies, Working Paper Series qt5zx1k22k, Institute of Transportation Studies, UC Davis.
- Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
- Peng, Qiao & Li, Wei & Fowler, Michael & Chen, Tao & Jiang, Wei & Liu, Kailong, 2024. "Battery calendar degradation trajectory prediction: Data-driven implementation and knowledge inspiration," Energy, Elsevier, vol. 294(C).
- Chen, Long & Ding, Shicong & Wang, Li & Zhu, Feng & Zhu, Xiayu & Zhang, Songtong & Dai, Haifeng & He, Xiangming & Cao, Gaoping & Qiu, Jinyi & Zhang, Hao, 2024. "Electrochemical model boosting accurate prediction of calendar life for commercial LiFePO4|graphite cells by combining solid electrolyte interface side reactions," Applied Energy, Elsevier, vol. 376(PA).
- Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wei, Xuezhe & Shang, Wenlong & Dai, Haifeng, 2022. "A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 322(C).
- Ai-Min Li & Zeyi Wang & Travis P. Pollard & Weiran Zhang & Sha Tan & Tianyu Li & Chamithri Jayawardana & Sz-Chian Liou & Jiancun Rao & Brett L. Lucht & Enyuan Hu & Xiao-Qing Yang & Oleg Borodin & Chun, 2024. "High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Ali Kadivar & Kaveh Niayesh, 2020. "Effects of Fast Elongation on Switching Arcs Characteristics in Fast Air Switches," Energies, MDPI, vol. 13(18), pages 1-23, September.
- Jia Guo & Yaqi Li & Kjeld Pedersen & Daniel-Ioan Stroe, 2021. "Lithium-Ion Battery Operation, Degradation, and Aging Mechanism in Electric Vehicles: An Overview," Energies, MDPI, vol. 14(17), pages 1-22, August.
- Wang, Shunli & Takyi-Aninakwa, Paul & Jin, Siyu & Yu, Chunmei & Fernandez, Carlos & Stroe, Daniel-Ioan, 2022. "An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation," Energy, Elsevier, vol. 254(PA).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924026059. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.