IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261924025789.html
   My bibliography  Save this article

Toward the efficient and accurate management of the water-energy nexus: Optimization modeling based on urban resource metabolic mechanism identification

Author

Listed:
  • Zhang, Yang
  • Xue, Qiang
  • Chen, Liu
  • Zhang, Jinbo
  • Xie, Yulei
  • Lu, Lu
  • Guo, Huaicheng
  • Qin, Changbo
  • Wang, Jinnan

Abstract

Due to the lack of consideration for the implicit effects of material metabolism within the water-energy nexus, most current studies on the water-energy nexus recognize quantitative water-energy relationships from the standpoint of external intervention. The water-energy nexus metabolic stochastic optimization methodological framework is proposed in this study aims to provide guidance for external macro-management actions by revealing the internal structural and functional characteristics of the system. This framework not only captures the quantitative relationships changes dynamically in water-energy metabolic metabolism by industry, but also integrates the implicit internal action relationships into the industrial optimization model structure, achieving accurate optimization of urban water-energy collaborative management. This methodological framework is tested and validated through a case study of the water-energy system in Tianjin City, China. Multi-dimensional regulation schemes encompassing resource allocation, industrial scale coordination, and pollutant emission adjustments are examined. The results show that within the water-energy nexus, agriculture industry, mining industry, and gas industry are identified as the sectors with the most abundant co-generation and competition between the water and energy systems, which indicates that significant synergies in other industrial sectors will be achieved through the implementation of water-saving, energy-saving, and resource-efficient management measures in these industries in Tianjin. The contradiction between resource-environmental risks and economic benefits in the tertiary industry is prominent and needs further attention. Decision makers should also pay attention to the impact of uncertainty on metabolic mechanisms and resource allocation, as well as understand the positive role of industrial restructuring in promoting the sustainable development of water-energy nexus systems.

Suggested Citation

  • Zhang, Yang & Xue, Qiang & Chen, Liu & Zhang, Jinbo & Xie, Yulei & Lu, Lu & Guo, Huaicheng & Qin, Changbo & Wang, Jinnan, 2025. "Toward the efficient and accurate management of the water-energy nexus: Optimization modeling based on urban resource metabolic mechanism identification," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924025789
    DOI: 10.1016/j.apenergy.2024.125194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025789
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Bo & Li, Huajiao & Shi, Jianglan & Ma, Ning & Qi, Yajie, 2022. "Detecting the control and dependence relationships within the global embodied energy trade network," Energy, Elsevier, vol. 238(PB).
    2. Jan Sandstad Næss & Otavio Cavalett & Francesco Cherubini, 2021. "The land–energy–water nexus of global bioenergy potentials from abandoned cropland," Nature Sustainability, Nature, vol. 4(6), pages 525-536, June.
    3. Chen, Chen & Zhang, Xiaodong & Zhang, Huayong & Cai, Yanpeng & Wang, Shuguang, 2022. "Managing water-energy-carbon nexus in integrated regional water network planning through graph theory-based bi-level programming," Applied Energy, Elsevier, vol. 328(C).
    4. Lv, J. & Li, Y.P. & Shan, B.G. & Jin, S.W. & Suo, C., 2018. "Planning energy-water nexus system under multiple uncertainties – A case study of Hebei province," Applied Energy, Elsevier, vol. 229(C), pages 389-403.
    5. Wang, Saige & Cao, Tao & Chen, Bin, 2017. "Urban energy–water nexus based on modified input–output analysis," Applied Energy, Elsevier, vol. 196(C), pages 208-217.
    6. Zhang, Kai & Zhang, Yiyi & Xi, Shan & Liu, Jiefeng & Li, Jiashuo & Hou, Shengren & Chen, Bin, 2022. "Multi-objective optimization of energy-water nexus from spatial resource reallocation perspective in China," Applied Energy, Elsevier, vol. 314(C).
    7. Oke, Doris & Mukherjee, Rajib & Sengupta, Debalina & Majozi, Thokozani & El-Halwagi, Mahmoud, 2020. "On the optimization of water-energy nexus in shale gas network under price uncertainties," Energy, Elsevier, vol. 203(C).
    8. Hiramatsu, Tomoru & Inoue, Hiroki & Kato, Yasuhiko, 2016. "Estimation of interregional input–output table using hybrid algorithm of the RAS method and real-coded genetic algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 385-402.
    9. Jiabo Yin & Pierre Gentine & Louise Slater & Lei Gu & Yadu Pokhrel & Naota Hanasaki & Shenglian Guo & Lihua Xiong & Wolfram Schlenker, 2023. "Future socio-ecosystem productivity threatened by compound drought–heatwave events," Nature Sustainability, Nature, vol. 6(3), pages 259-272, March.
    10. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    11. Liu, Yating & Chen, Bin, 2020. "Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses," Applied Energy, Elsevier, vol. 268(C).
    12. Jin, Xuanyi & Jiang, Wenrui & Fang, Delin & Wang, Saige & Chen, Bin, 2024. "Evaluation and driving force analysis of the water-energy‑carbon nexus in agricultural trade for RCEP countries," Applied Energy, Elsevier, vol. 353(PB).
    13. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    14. De Stercke, Simon & Mijic, Ana & Buytaert, Wouter & Chaturvedi, Vaibhav, 2018. "Modelling the dynamic interactions between London’s water and energy systems from an end-use perspective," Applied Energy, Elsevier, vol. 230(C), pages 615-626.
    15. Chen, Pi-Cheng & Alvarado, Valeria & Hsu, Shu-Chien, 2018. "Water energy nexus in city and hinterlands: Multi-regional physical input-output analysis for Hong Kong and South China," Applied Energy, Elsevier, vol. 225(C), pages 986-997.
    16. Xia, Chuyu & Chen, Bin, 2020. "Urban land-carbon nexus based on ecological network analysis," Applied Energy, Elsevier, vol. 276(C).
    17. Zhu, Xueting & Mu, Xianzhong & Hu, Guangwen, 2019. "Ecological network analysis of urban energy metabolic system—A case study of Beijing," Ecological Modelling, Elsevier, vol. 404(C), pages 36-45.
    18. Teotónio, Carla & Rodríguez, Miguel & Roebeling, Peter & Fortes, Patrícia, 2020. "Water competition through the ‘water-energy’ nexus: Assessing the economic impacts of climate change in a Mediterranean context," Energy Economics, Elsevier, vol. 85(C).
    19. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qionghong & Liu, Yufei & Su, Meirong & Hu, Yuanchao & Cao, Xiujuan & Dang, Zhi & Lu, Guining, 2025. "The effect of energy–water nexus on single resource system in urban agglomerations: Analysis based on a multiregional network approach," Applied Energy, Elsevier, vol. 378(PA).
    2. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    3. Wang, Xipan & Song, Junnian & Xing, Jiahao & Duan, Haiyan & Wang, Xian'en, 2022. "System nexus consolidates coupling of regional water and energy efficiencies," Energy, Elsevier, vol. 256(C).
    4. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    5. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    6. Jinyoung Lee & Hana Kim, 2021. "Regional dimensions of the South Korean water-energy nexus," Energy & Environment, , vol. 32(4), pages 722-736, June.
    7. Yinwen Huang & Dechun Huang, 2023. "Decoupling Economic Growth from Embodied Water–Energy–Food Consumption Based on a Modified MRIO Model: A Case Study of the Yangtze River Delta Region in China," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    8. Wang, Saige & Fath, Brian & Chen, Bin, 2019. "Energy–water nexus under energy mix scenarios using input–output and ecological network analyses," Applied Energy, Elsevier, vol. 233, pages 827-839.
    9. Feng, Cuiyang & Qu, Shen & Jin, Yi & Tang, Xu & Liang, Sai & Chiu, Anthony S.F. & Xu, Ming, 2019. "Uncovering urban food-energy-water nexus based on physical input-output analysis: The case of the Detroit Metropolitan Area," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    11. Nawab, Asim & Liu, Gengyuan & Meng, Fanxin & Hao, Yan & Zhang, Yan, 2019. "Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy," Ecological Modelling, Elsevier, vol. 403(C), pages 44-56.
    12. Zhang, Wei & Valencia, Andrea & Gu, Lixing & Zheng, Qipeng P. & Chang, Ni-Bin, 2020. "Integrating emerging and existing renewable energy technologies into a community-scale microgrid in an energy-water nexus for resilience improvement," Applied Energy, Elsevier, vol. 279(C).
    13. Lv, J. & Li, Y.P. & Huang, G.H. & Suo, C. & Mei, H. & Li, Y., 2020. "Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Wang, Saige & Liu, Yating & Chen, Bin, 2018. "Multiregional input–output and ecological network analyses for regional energy–water nexus within China," Applied Energy, Elsevier, vol. 227(C), pages 353-364.
    16. Schlör, Holger & Venghaus, Sandra, 2022. "Measuring resilience in the food-energy-water nexus based on ethical values and trade relations," Applied Energy, Elsevier, vol. 323(C).
    17. Duan, Cuncun & Chen, Bin, 2020. "Driving factors of water-energy nexus in China," Applied Energy, Elsevier, vol. 257(C).
    18. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    19. Li, Xian & Yang, Lili & Zheng, Heran & Shan, Yuli & Zhang, Zongyong & Song, Malin & Cai, Bofeng & Guan, Dabo, 2019. "City-level water-energy nexus in Beijing-Tianjin-Hebei region," Applied Energy, Elsevier, vol. 235(C), pages 827-834.
    20. Ying Zhu & Tianhao Cui & Yanzheng Liu & Qin Zhou & Yexin Li, 2021. "Research on Inter-Provincial Transfer of CO 2 Emissions from Transportation by Considering Fuzzy Parameter," Sustainability, MDPI, vol. 13(13), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924025789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.