IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924025170.html
   My bibliography  Save this article

Assessing the performance of gold-coated titanium bipolar plates in proton exchange membrane water electrolysis under variable photovoltaic inputs

Author

Listed:
  • Cheng, Hongxu
  • Luo, Hong
  • Wang, Xuefei
  • Bi, Da
  • Chang, Yue
  • Song, Jie

Abstract

Given the anticipated growth of the green hydrogen economy, revealing the degradation features of proton exchange membrane water electrolysis (PEMWE) under fluctuating renewable energy loads is essential. However, many studies aimed at exploring the characteristics of catalysts and membranes under various loads have neglected the study of bipolar plate materials under fluctuating loads observed in realistic scenarios. This study investigated the electrochemical behavior and failure mechanism of Au coating on TA1 titanium bipolar plates in the simulated anode environment of PEMWE, especially under fluctuating loads. We simulated accelerated voltage fluctuation based on minute-level data measured by photovoltaic power stations in typical new energy enrichment areas in northwest China. The influence of different fluctuation frequencies on the electrochemical corrosion and conductivity of Au-coated TA1 was discussed. The results showed the electrochemical anode process of Au-coated TA1 was more sensitive to fluctuation frequency. The voltage fluctuation load changed the film structure on the surface of TA1 and Au-coated TA1, thereby affecting the electrochemical behavior. Further, this study revealed the impact of accelerated voltage fluctuations on interfacial contact resistance. The Au(OH)3 content increased with higher fluctuation frequency, leading to the Au consumption and a decrease in conductivity. When the frequency of accelerated voltage fluctuation increases from 0 cycles to 120 cycles, although the passive current density rapidly decreases, it can still cause serious damage to the Au coating, resulting in an increase in interfacial contact resistance to 10.48 mΩ·cm2. These insights underscore the critical role of voltage fluctuation conditions in PEMWE durability, offering strategic guidance for designing metal bipolar plates to enhance the longevity and performance of hydrogen production components in renewable energy applications.

Suggested Citation

  • Cheng, Hongxu & Luo, Hong & Wang, Xuefei & Bi, Da & Chang, Yue & Song, Jie, 2025. "Assessing the performance of gold-coated titanium bipolar plates in proton exchange membrane water electrolysis under variable photovoltaic inputs," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025170
    DOI: 10.1016/j.apenergy.2024.125133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wenchao Shangguan & Qing Liu & Ying Wang & Ning Sun & Yu Liu & Rui Zhao & Yingxuan Li & Chuanyi Wang & Jincai Zhao, 2022. "Molecular-level insight into photocatalytic CO2 reduction with H2O over Au nanoparticles by interband transitions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Khatib, F.N. & Wilberforce, Tabbi & Ijaodola, Oluwatosin & Ogungbemi, Emmanuel & El-Hassan, Zaki & Durrant, A. & Thompson, J. & Olabi, A.G., 2019. "Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 1-14.
    3. Ren, Peng & Pei, Pucheng & Chen, Dongfang & Zhang, Lu & Li, Yuehua & Song, Xin & Wang, Mingkai & Wang, He, 2022. "Corrosion of metallic bipolar plates accelerated by operating conditions in a simulated PEM fuel cell cathode environment," Renewable Energy, Elsevier, vol. 194(C), pages 1277-1287.
    4. Wang, Jingbo & Wen, Jianfeng & Wang, Jiarong & Yang, Bo & Jiang, Lin, 2024. "Water electrolyzer operation scheduling for green hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    5. Papakonstantinou, Georgios & Algara-Siller, Gerardo & Teschner, Detre & Vidaković-Koch, Tanja & Schlögl, Robert & Sundmacher, Kai, 2020. "Degradation study of a proton exchange membrane water electrolyzer under dynamic operation conditions," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makhsoos, Ashkan & Kandidayeni, Mohsen & Boulon, Loïc & Pollet, Bruno G., 2023. "A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production- a case study in Trois-Rivières," Energy, Elsevier, vol. 282(C).
    2. Negar Shaya & Simon Glöser-Chahoud, 2024. "A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances," Energies, MDPI, vol. 17(16), pages 1-21, August.
    3. Zhang, Hong & Yuan, Tiejiang, 2022. "Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations," Applied Energy, Elsevier, vol. 324(C).
    4. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    5. Sun, Mingjia & Zhang, Yumeng & Liu, Luyao & Nian, Xingheng & Zhang, Hanfei & Duan, Liqiang, 2025. "Dynamic performance analysis of hydrogen production and hot standby dual-mode system via proton exchange membrane electrolyzer and phase change material-based heat storage," Applied Energy, Elsevier, vol. 377(PC).
    6. Tabbi Wilberforce & Abdul Ghani Olabi, 2020. "Performance Prediction of Proton Exchange Membrane Fuel Cells (PEMFC) Using Adaptive Neuro Inference System (ANFIS)," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    7. Damien Guilbert & Gianpaolo Vitale, 2021. "Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon," Clean Technol., MDPI, vol. 3(4), pages 1-29, December.
    8. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    9. Li, Yuxuan & Li, Hongkun & Liu, Weiqun & Zhu, Qiao, 2024. "Optimization of membrane thickness for proton exchange membrane electrolyzer considering hydrogen production efficiency and hydrogen permeation phenomenon," Applied Energy, Elsevier, vol. 355(C).
    10. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Wang, Jingyi & Yang, Jinbin & Feng, Yu & Hua, Jing & Chen, Zhengjian & Liao, Mei & Zhang, Jingran & Qin, Jiang, 2025. "Comparative experimental study of alkaline and proton exchange membrane water electrolysis for green hydrogen production," Applied Energy, Elsevier, vol. 379(C).
    12. Ana P. R. A. Ferreira & Raisa C. P. Oliveira & Maria Margarida Mateus & Diogo M. F. Santos, 2023. "A Review of the Use of Electrolytic Cells for Energy and Environmental Applications," Energies, MDPI, vol. 16(4), pages 1-33, February.
    13. Ibáñez-Rioja, Alejandro & Puranen, Pietari & Järvinen, Lauri & Kosonen, Antti & Ruuskanen, Vesa & Ahola, Jero & Koponen, Joonas, 2022. "Simulation methodology for an off-grid solar–battery–water electrolyzer plant: Simultaneous optimization of component capacities and system control," Applied Energy, Elsevier, vol. 307(C).
    14. Tang, Yuzhen & Zheng, Zhuoqun & Min, Fanqi & Xie, Jingying & Yang, Hengzhao, 2025. "An optimization framework for component sizing and energy management of hybrid electrolyzer systems considering physical characteristics of alkaline electrolyzers and proton exchange membrane electrol," Renewable Energy, Elsevier, vol. 243(C).
    15. Chen, Xia & Rex, Alexander & Woelke, Janis & Eckert, Christoph & Bensmann, Boris & Hanke-Rauschenbach, Richard & Geyer, Philipp, 2024. "Machine learning in proton exchange membrane water electrolysis — A knowledge-integrated framework," Applied Energy, Elsevier, vol. 371(C).
    16. Raman, K. Ashoke & Hammacher, Linus & Kungl, Hans & Karl, André & Jodat, Eva & Eichel, Rüdiger-A. & Karyofylli, Violeta, 2025. "Data-driven surrogate modeling for performance prediction and sensitivity analysis of transport properties in proton exchange membrane water electrolyzers," Applied Energy, Elsevier, vol. 386(C).
    17. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    18. Wang, Xuefei & Luo, Hong & Cheng, Hongxu & Yue, Luo & Deng, Zhanfeng & Yao, Jizheng & Li, Xiaogang, 2024. "Investigation on the performance of Pt surface modified Ti bipolar plates in proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    19. Norman, E.A. & Maestre, V.M. & Ortiz, A. & Ortiz, I., 2024. "Steam electrolysis for green hydrogen generation. State of the art and research perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    20. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.