IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics0306261924024243.html
   My bibliography  Save this article

A tri-level model for optimal management of active distribution networks enabling two-layer local markets

Author

Listed:
  • León Japa, Rogelio S.
  • Tostado-Véliz, Marcos
  • Ogáyar, Blas
  • Jurado, Francisco

Abstract

The deregulation of distribution systems enable local energy trading under the umbrella of local market strategies, which are launched and cleared by local entities like distribution system operators. The emergence of active players connected to distribution networks such as microgrids path the way to two-layer market structures, within which different local markets must coexist and coordinate. This new paradigm advocates for developing new management and market models suitable for multi-level local markets. This paper focuses on this issue. In particular, a new management model for active distribution networks enabling two-layer local markets is developed, which casts as an original tri-level optimization approach. This paper applies the developed methodology to the case in which different microgrids connected to a distribution market launch local markets for energy trading within the microgrid, but it could be applied to similar frameworks such as energy communities or virtual power plants. The new approach stablishes a game-oriented market coordination which preserves the hierarchical feature of the coordinated market strategy. A case study on a 33-bus radial distribution network serves to validate the model and illustrates how active players such as distributed generators and flexible demands perform under local market rules. A number of scenarios are studied under different distributed generation and microgrid penetration, showing that incrementing the number of both leads to improve the economy of the distribution system operator and microgrids. Finally, a sensitivity analysis regarding the renewable generation potential is studied.

Suggested Citation

  • León Japa, Rogelio S. & Tostado-Véliz, Marcos & Ogáyar, Blas & Jurado, Francisco, 2025. "A tri-level model for optimal management of active distribution networks enabling two-layer local markets," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024243
    DOI: 10.1016/j.apenergy.2024.125040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924024243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jalali, Mehdi & Zare, Kazem & Seyedi, Heresh, 2017. "Strategic decision-making of distribution network operator with multi-microgrids considering demand response program," Energy, Elsevier, vol. 141(C), pages 1059-1071.
    2. Turdybek, Balgynbek & Tostado-Véliz, Marcos & Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Jurado, Francisco, 2024. "A local electricity market mechanism for flexibility provision in industrial parks involving Heterogenous flexible loads," Applied Energy, Elsevier, vol. 359(C).
    3. Tostado-Véliz, Marcos & Hasanien, Hany M. & Jordehi, Ahmad Rezaee & Turky, Rania A. & Jurado, Francisco, 2023. "Risk-averse optimal participation of a DR-intensive microgrid in competitive clusters considering response fatigue," Applied Energy, Elsevier, vol. 339(C).
    4. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Mansouri, Seyed Amir & Zhou, Yuekuan & Jurado, Francisco, 2024. "A local electricity-hydrogen market model for industrial parks," Applied Energy, Elsevier, vol. 360(C).
    5. Du, Yan & Wang, Zhiwei & Liu, Guangyi & Chen, Xi & Yuan, Haoyu & Wei, Yanli & Li, Fangxing, 2018. "A cooperative game approach for coordinating multi-microgrid operation within distribution systems," Applied Energy, Elsevier, vol. 222(C), pages 383-395.
    6. Tostado-Véliz, Marcos & Jin, Xiaolong & Bhakar, Rohit & Jurado, Francisco, 2024. "Coordinated pricing mechanism for parking clusters considering interval-guided uncertainty-aware strategies," Applied Energy, Elsevier, vol. 355(C).
    7. Xie, Min & Ji, Xiang & Hu, Xintong & Cheng, Peijun & Du, Yuxin & Liu, Mingbo, 2018. "Autonomous optimized economic dispatch of active distribution system with multi-microgrids," Energy, Elsevier, vol. 153(C), pages 479-489.
    8. Rahnama, Alireza & Shayeghi, Hossein & Dejamkhooy, Abdolmajid & Bizon, Nicu, 2022. "A cost-technical profit-sharing approach for optimal energy management of a multi-microgrid distribution system," Energy, Elsevier, vol. 261(PB).
    9. Mansouri, S.A. & Ahmarinejad, A. & Nematbakhsh, E. & Javadi, M.S. & Esmaeel Nezhad, A. & Catalão, J.P.S., 2022. "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources," Energy, Elsevier, vol. 245(C).
    10. Ruiz, C. & Conejo, A.J., 2015. "Robust transmission expansion planning," European Journal of Operational Research, Elsevier, vol. 242(2), pages 390-401.
    11. Liu, Yixin & Guo, Li & Wang, Chengshan, 2018. "A robust operation-based scheduling optimization for smart distribution networks with multi-microgrids," Applied Energy, Elsevier, vol. 228(C), pages 130-140.
    12. RUIZ, Carlos & CONEJO, Antonio J. & SMEERS, Yves, 2012. "Equilibria in an oligopolistic electricity pool with stepwise offer curves," LIDAM Reprints CORE 2395, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Ziqing & Wing Chan, Ka & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2021. "Real-Time interaction of active distribution network and virtual microgrids: Market paradigm and data-driven stakeholder behavior analysis," Applied Energy, Elsevier, vol. 297(C).
    2. Diptish Saha & Najmeh Bazmohammadi & Juan C. Vasquez & Josep M. Guerrero, 2023. "Multiple Microgrids: A Review of Architectures and Operation and Control Strategies," Energies, MDPI, vol. 16(2), pages 1-32, January.
    3. Qiao, Jinpeng & Mi, Yang & Shen, Jie & Lu, Changkun & Cai, Pengcheng & Ma, Siyuan & Wang, Peng, 2025. "Optimization schedule strategy of active distribution network based on microgrid group and shared energy storage," Applied Energy, Elsevier, vol. 377(PD).
    4. Qiu, Haifeng & You, Fengqi, 2020. "Decentralized-distributed robust electric power scheduling for multi-microgrid systems," Applied Energy, Elsevier, vol. 269(C).
    5. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    6. Li, Longxi, 2021. "Coordination between smart distribution networks and multi-microgrids considering demand side management: A trilevel framework," Omega, Elsevier, vol. 102(C).
    7. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    8. Karimi, Hamid & Jadid, Shahram, 2020. "Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework," Energy, Elsevier, vol. 195(C).
    9. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Zhou, Yuekuan & Mansouri, Seyed Amir & Jurado, Francisco, 2024. "Best-case-aware planning of photovoltaic-battery systems for multi-mode charging stations," Renewable Energy, Elsevier, vol. 225(C).
    10. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Mansouri, Seyed Amir & Escámez, Antonio & Alharthi, Yahya Z. & Jurado, Francisco, 2024. "Risk-averse electrolyser sizing in industrial parks: An efficient stochastic-robust approach," Applied Energy, Elsevier, vol. 367(C).
    11. Tang, Chong & Liu, Mingbo & Dai, Yue & Wang, Zhijun & Xie, Min, 2019. "Decentralized saddle-point dynamics solution for optimal power flow of distribution systems with multi-microgrids," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Tostado-Véliz, Marcos & Hasanien, Hany M. & Jordehi, Ahmad Rezaee & Turky, Rania A. & Jurado, Francisco, 2023. "Risk-averse optimal participation of a DR-intensive microgrid in competitive clusters considering response fatigue," Applied Energy, Elsevier, vol. 339(C).
    13. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    14. Tostado-Véliz, Marcos & Hasanien, Hany M. & Rezaee Jordehi, Ahmad & Turky, Rania A. & Gómez-González, Manuel & Jurado, Francisco, 2023. "An Interval-based privacy – Aware optimization framework for electricity price setting in isolated microgrid clusters," Applied Energy, Elsevier, vol. 340(C).
    15. Longxi Li, 2020. "Optimal Coordination Strategies for Load Service Entity and Community Energy Systems Based on Centralized and Decentralized Approaches," Energies, MDPI, vol. 13(12), pages 1-22, June.
    16. Kong, Xiangyu & Liu, Dehong & Wang, Chengshan & Sun, Fangyuan & Li, Shupeng, 2020. "Optimal operation strategy for interconnected microgrids in market environment considering uncertainty," Applied Energy, Elsevier, vol. 275(C).
    17. Ju, Liwei & Zhang, Qi & Tan, Zhongfu & Wang, Wei & Xin, He & Zhang, Zehao, 2018. "Multi-agent-system-based coupling control optimization model for micro-grid group intelligent scheduling considering autonomy-cooperative operation strategy," Energy, Elsevier, vol. 157(C), pages 1035-1052.
    18. Taheri, S. Saeid & Kazempour, Jalal & Seyedshenava, Seyedjalal, 2017. "Transmission expansion in an oligopoly considering generation investment equilibrium," Energy Economics, Elsevier, vol. 64(C), pages 55-62.
    19. Zhou, Xiaoqian & Ai, Qian & Yousif, Muhammad, 2019. "Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.