IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v275y2020ics0306261920308485.html
   My bibliography  Save this article

Optimal operation strategy for interconnected microgrids in market environment considering uncertainty

Author

Listed:
  • Kong, Xiangyu
  • Liu, Dehong
  • Wang, Chengshan
  • Sun, Fangyuan
  • Li, Shupeng

Abstract

The interconnected microgrid system (IMS) is a promising solution for the problem of growing penetration of renewable-based microgrids into the power system. To optimally coordinate the operation of microgrids owned by different owners while considering uncertainties in market environment, a bi-level distributed optimized operation method for IMS with uncertainties is proposed in this paper. A hierarchical and distributed operational communication architecture of IMS is first established. A bi-level distributed optimization model was built for IMS, where at the upper level, the IMS operates purchase-sale mode or demand response mode with the distribution network operator and optimizes the trading power with microgrids to maximize revenue. At the lower level, the chance constraint programming is used to describe and deal with the uncertainty of renewable energy and loads and optimize the output and energy storage of distributed energy with the goal of minimum cost. The analytical target cascading and augmented Lagrange method are combined to decouple and reconstruct the bi-level model for distributed solution and establishing a fair price mechanism. The optimal solutions of the problem are obtained through parallel iteration, in which the price signal plays a coordinated role in the distributed iterative optimization process. Abundant case studies verify the advantages of the model and the performance of the proposed method.

Suggested Citation

  • Kong, Xiangyu & Liu, Dehong & Wang, Chengshan & Sun, Fangyuan & Li, Shupeng, 2020. "Optimal operation strategy for interconnected microgrids in market environment considering uncertainty," Applied Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308485
    DOI: 10.1016/j.apenergy.2020.115336
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920308485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jalali, Mehdi & Zare, Kazem & Seyedi, Heresh, 2017. "Strategic decision-making of distribution network operator with multi-microgrids considering demand response program," Energy, Elsevier, vol. 141(C), pages 1059-1071.
    2. Wu, Pan & Huang, Wentao & Tai, Nengling & Liang, Shuo, 2018. "A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection," Applied Energy, Elsevier, vol. 210(C), pages 1002-1016.
    3. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    4. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    5. Li, Zhengmao & Xu, Yan, 2019. "Temporally-coordinated optimal operation of a multi-energy microgrid under diverse uncertainties," Applied Energy, Elsevier, vol. 240(C), pages 719-729.
    6. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    7. Wang, Luhao & Zhang, Bingying & Li, Qiqiang & Song, Wen & Li, Guanguan, 2019. "Robust distributed optimization for energy dispatch of multi-stakeholder multiple microgrids under uncertainty," Applied Energy, Elsevier, vol. 255(C).
    8. Wei, Jingdong & Zhang, Yao & Wang, Jianxue & Cao, Xiaoyu & Khan, Muhammad Armoghan, 2020. "Multi-period planning of multi-energy microgrid with multi-type uncertainties using chance constrained information gap decision method," Applied Energy, Elsevier, vol. 260(C).
    9. Liu, Yixin & Guo, Li & Wang, Chengshan, 2018. "A robust operation-based scheduling optimization for smart distribution networks with multi-microgrids," Applied Energy, Elsevier, vol. 228(C), pages 130-140.
    10. Zhou, Xiaoqian & Ai, Qian & Yousif, Muhammad, 2019. "Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Yang, Yanhong & Pei, Wei & Huo, Qunhai & Sun, Jianjun & Xu, Feng, 2018. "Coordinated planning method of multiple micro-grids and distribution network with flexible interconnection," Applied Energy, Elsevier, vol. 228(C), pages 2361-2374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O., Yugeswar Reddy & J., Jithendranath & Chakraborty, Ajoy Kumar & Guerrero, Josep M., 2022. "Stochastic optimal power flow in islanded DC microgrids with correlated load and solar PV uncertainties," Applied Energy, Elsevier, vol. 307(C).
    2. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    3. Wu, Chuantao & Chen, Cen & Ma, Yuncong & Li, Feiyu & Sui, Quan & Lin, Xiangning & Wei, Fanrong & Li, Zhengtian, 2022. "Enhancing resilient restoration of distribution systems utilizing electric vehicles and supporting incentive mechanism," Applied Energy, Elsevier, vol. 322(C).
    4. Wu, Chuantao & Wang, Tao & Zhou, Dezhi & Cao, Shankang & Sui, Quan & Lin, Xiangning & Li, Zhengtian & Wei, Fanrong, 2023. "A distributed restoration framework for distribution systems incorporating electric buses," Applied Energy, Elsevier, vol. 331(C).
    5. Chang, Weiguang & Dong, Wei & Wang, Yubin & Yang, Qiang, 2022. "Two-stage coordinated operation framework for virtual power plant with aggregated multi-stakeholder microgrids in a deregulated electricity market," Renewable Energy, Elsevier, vol. 199(C), pages 943-956.
    6. Wu, Chuantao & Zhou, Dezhi & Lin, Xiangning & Sui, Quan & Wei, Fanrong & Li, Zhengtian, 2022. "A novel energy cooperation framework for multi-island microgrids based on marine mobile energy storage systems," Energy, Elsevier, vol. 252(C).
    7. Wang, Zibo & Yu, Xiaodan & Mu, Yunfei & Jia, Hongjie & Jiang, Qian & Wang, Xiaoyu, 2021. "Peer-to-Peer energy trading strategy for energy balance service provider (EBSP) considering market elasticity in community microgrid," Applied Energy, Elsevier, vol. 303(C).
    8. Li, Bei & Li, Jiangchen, 2021. "Probabilistic sizing of a low-carbon emission power system considering HVDC transmission and microgrid clusters," Applied Energy, Elsevier, vol. 304(C).
    9. Wang, Zibo & Dong, Lei & Shi, Mengjie & Qiao, Ji & Jia, Hongjie & Mu, Yunfei & Pu, Tianjiao, 2023. "Market power modeling and restraint of aggregated prosumers in peer-to-peer energy trading: A game-theoretic approach," Applied Energy, Elsevier, vol. 348(C).
    10. Hong, Qiuyi & Meng, Fanlin & Liu, Jian & Bo, Rui, 2023. "A bilevel game-theoretic decision-making framework for strategic retailers in both local and wholesale electricity markets," Applied Energy, Elsevier, vol. 330(PA).
    11. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    12. Silva, Jéssica Alice A. & López, Juan Camilo & Arias, Nataly Bañol & Rider, Marcos J. & da Silva, Luiz C.P., 2021. "An optimal stochastic energy management system for resilient microgrids," Applied Energy, Elsevier, vol. 300(C).
    13. Wei, Chun & Shen, Zhuzheng & Xiao, Dongliang & Wang, Licheng & Bai, Xiaoqing & Chen, Haoyong, 2021. "An optimal scheduling strategy for peer-to-peer trading in interconnected microgrids based on RO and Nash bargaining," Applied Energy, Elsevier, vol. 295(C).
    14. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    15. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    16. Jani, Ali & Jadid, Shahram, 2023. "Two-stage energy scheduling framework for multi-microgrid system in market environment," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diptish Saha & Najmeh Bazmohammadi & Juan C. Vasquez & Josep M. Guerrero, 2023. "Multiple Microgrids: A Review of Architectures and Operation and Control Strategies," Energies, MDPI, vol. 16(2), pages 1-32, January.
    2. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    4. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).
    5. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    6. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    7. Mohseni, Shayan & Pishvaee, Mir Saman, 2023. "Energy trading and scheduling in networked microgrids using fuzzy bargaining game theory and distributionally robust optimization," Applied Energy, Elsevier, vol. 350(C).
    8. Zhou, Xiaoqian & Ai, Qian & Yousif, Muhammad, 2019. "Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Qiu, Haifeng & You, Fengqi, 2020. "Decentralized-distributed robust electric power scheduling for multi-microgrid systems," Applied Energy, Elsevier, vol. 269(C).
    10. Tostado-Véliz, Marcos & Hasanien, Hany M. & Jordehi, Ahmad Rezaee & Turky, Rania A. & Jurado, Francisco, 2023. "Risk-averse optimal participation of a DR-intensive microgrid in competitive clusters considering response fatigue," Applied Energy, Elsevier, vol. 339(C).
    11. Zhu, Ziqing & Wing Chan, Ka & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2021. "Real-Time interaction of active distribution network and virtual microgrids: Market paradigm and data-driven stakeholder behavior analysis," Applied Energy, Elsevier, vol. 297(C).
    12. Tostado-Véliz, Marcos & Hasanien, Hany M. & Rezaee Jordehi, Ahmad & Turky, Rania A. & Gómez-González, Manuel & Jurado, Francisco, 2023. "An Interval-based privacy – Aware optimization framework for electricity price setting in isolated microgrid clusters," Applied Energy, Elsevier, vol. 340(C).
    13. Chang, Weiguang & Dong, Wei & Wang, Yubin & Yang, Qiang, 2022. "Two-stage coordinated operation framework for virtual power plant with aggregated multi-stakeholder microgrids in a deregulated electricity market," Renewable Energy, Elsevier, vol. 199(C), pages 943-956.
    14. Pan Wu & Wentao Huang & Nengling Tai & Zhoujun Ma & Xiaodong Zheng & Yong Zhang, 2019. "A Multi-Layer Coordinated Control Scheme to Improve the Operation Friendliness of Grid-Connected Multiple Microgrids," Energies, MDPI, vol. 12(2), pages 1-21, January.
    15. Li, Longxi, 2021. "Coordination between smart distribution networks and multi-microgrids considering demand side management: A trilevel framework," Omega, Elsevier, vol. 102(C).
    16. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    17. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    18. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    19. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    20. Jani, Ali & Jadid, Shahram, 2023. "Two-stage energy scheduling framework for multi-microgrid system in market environment," Applied Energy, Elsevier, vol. 336(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.